

ASSEMBLY LANGUAGE FOR ARCADE GAMES
AND OTHER FAST SPECTRUM PROGRAMS

Assembly Language for
Arcade Games

and other Fast Spectrum
Programs

Stuart Nicholls

McGRAW-HILL Book Company (UK) Limited

London - New York - St Louis - San Francisco - Auckland -
Bogota - Guatemala - Hamburg - Johannesburg - Lisbon -
Madrid - Mexico - Montreal - New Delhi - Panama - Paris - San
Juan - Sdo Paulo - Singapore - Sydney - Tokyo - Toronto

Published by
McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD - BERKSHIRE - ENGLAND

British Library Cataloguing in Publication Data
Nicholls, S.A.
Assembly language for arcade games and other fast Spectrum programs.

1. Electronic games. 2. Sinclair ZX Spectrum (Computer).
3. Assembler language (Computer program language).
1. Title.

794.8'028'5424 GV1469.2

ISBN 0-07-084729-0

Library of Congress Cataloging in Publication Data

Nicholls, Stuart.

Assembly language for arcade games and other fast Spectrum programs.

1. Assembler language (Computer program language) 2. Computer games.

3. Sinclair ZX Spectrum (Computer) Programming.
I. Title.

QA76.73.A8N53 1984 001.64’2 83-24915
ISBN 0-07-084729-0

Copyright © 1984 McGraw-Hill Book Company (UK) Limited. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior permission of McGraw-Hill Book Company
(UK) Limited, or of the original copyright holder.

12345CUP8654
Typeset by TC Photo-Typesetters, Maidenhead, England

Printed in Great Britain at the University Press, Cambridge

To my wife Fran for all her help in typing the original manuscript (a task carried
out without understanding a word of it).

CONTENTS

Preface
Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5

Chapter 6

Chapter 7
Chapter 8

Chapter 9

Chapter 10
Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6

Printing with colour

PLOT, DRAW, and CIRCLE
PLOT

DRAW x,y,a

CIRCLE x,y,r

Counting
Random numbers

The keyboard
Using the LAST KEY variable
Using IN A, (C)

Movement

Foreground movement one character square
Background movement one character square
Pixel movement

Music and sound effects

ATTRIBUTE, SCREEN$ and POINT
ATTRIBUTE (line, column)
SCREENS$ (line, column)

POINT

The printer
COPY
LPRINT
LLIST

Program conversion

Replacement ROM routines

Spectrum Z80 machine code listings
Decimal-hexadecimal conversion tables
Useful calculator literals

Memory map of display file

Farewell program

X

19
19

22
29

37
37
37

42
42
44
60

68

80
80
82
84

85
85

86

87
114
119
125
127
128
129

PREFACE

So you have ploughed your way through handbooks or manuals on
780 machine language programming for the Spectrum and have
been given a fair knowledge of all the instructions! But just as they
were getting interesting you end up with a few examples of how to
add and subtract and are then left to fend for yourself.

This book will take you on to the next stage, carrying on where
the others left off, and showing you how to use your knowledge of
Spectrum routines to produce full working programs written
entirely in machine code.

We shall look at the easier routines such as printing and also at
the more complicated routines such as random numbers and the use
of the calculator with floating point numbers.

The final Chapter shows how to apply the information given in
the book to convert a BASIC games program entirely into machine
code and, for those of you who cannot spend the time programming
from the listings, an accompanying tape with demonstration
programs of all the points discussed (including the BASIC and
machine code versions of the main program for comparison) is
available (see the last page in this book).

The machine code listings have all been produced using the
McGraw-Hill Assembler. I cannot stress too highly that anyone who
is serious about writing machine language programs should use an
Assembler, since it does remove all the tedious table-searching
normally associated with machine language and, more
importantly, it enables you to modify your program easily when it
crashes (which will happen all too often when you first start out).

PRINTING
WITH COLOUR

Although printing in machine code is the most tedious and
time-consuming of tasks, it is also one of the most important. A good
program can be spoilt by a bad layout and display with perhaps
ambiguous input prompts and, likewise, a mediocre program can be
improved by a good layout. Before any program is developed, a good
deal of thought must go into the visual presentation.

The Spectrum has 21 user-definable graphics (UDGs) so make
full use of them. For example, if you are developing a space invaders
type of game, do not stop at redefining the invaders, bombs, and
shots; use the remaining characters to redefine numbers zero to
nine to give futuristic characters for scoring or to create interesting
landscapes. Use colours sensibly; do not put red and magenta
together (or yellow and white) and it may be wise to run your
program on a black and white set to see whether it still looks right
since many Spectrum owners will not have easy access to a colour
set.

As every program requires printing of information in one form or
another, in this Chapter we will look at methods of converting
BASIC PRINT into machine code.

The first BASIC program command usually involves the setting
up of BORDER, PAPER, and INK permanent colours followed by
CLS to put these colours on to the screen.

The BORDER colour is probably the easiest to set up in machine
code and takes just five bytes. The A register is first loaded with the
‘colour number’ required and a call then made to the ROM routine
8859 d (229Bh). This routine sets the screen to the required border

19 BRORDER S: REM green

org 23760
23766 3IE 05 ld a,5

CALL BORDER SET

23762 CD 9B 22 call 8859
23765 C? ret
Program 1.1

and stores the colour value in the systems variable BORDCR 23624
(the value stored is in fact eight times the colour value) that is bits 5
— 3. The other bits are used to store the INK, BRIGHT, and FLASH
parameters for the lower half of the screen (the input lines).

Program 1.1 shows the machine code version for the setting of
BORDER 5 (green).

The permanent colours for PAPER and INK are held in the
systems variable ATTR-P (23693). Bits 0—2 hold the INK colours
and bits 3—5 the PAPER colours. The remaining bits 6 and 7 are
used to indicate FLASH and BRIGHT. For FLASH @ bit 7 is reset;
for FLASH 1 bit 7 is set. BRIGHT 0 has bit 6 reset and BRIGHT 1
has bit 6 set.

Program 1.2 shows the setting of PAPER 3: INK 1: CLS and
demonstrates the fact that ATTR-P (23693) can be regarded asIY +
83. The IY register is used as a pointer to systems variable and holds
value 23610. If you wish to ‘LD(23609), A’ for example this can be
considered as (IY — 1) or (IY + 255).

5 REM set up permanent screen Call open channel 2
colours
1@ FAFPER Z: INK 1: CLS 2E76EH EE 0 ld a,2
23768 CD @1 16 call 5633
call CLS
Ld (ATTR-F),colours
23771 CD &8 @D call =435
23762 FD 36 53 19 1d (iy+83),25 2E774 C9 ret

Program 1.2

The CLS command CALL 3435 clears the screen and sets the
screen parameters as in the BASIC CLS but you will notice that
before the call to CLS is made there is a call to ROM routine 5633.
This is most important and will be used many times throughout this
Chapter. The call is necessary to open channel 2 allowing
information to go to the top half of the screen, that is, lines 0 to 21.
Once our permanent screen parameters are set up, we can move on
to actually printing on the screen.

Program 1.3 shows the method of printing a character on the
screen in the next print position; this will be 0,0; if a CLS command
has been executed. You will notice again that ‘channel 2’ requires
opening first and that the code of the character to be printed is held
in the A register.

The ROM routine to print a character is called using RST 16 d
which in fact is a call to routine 5618 d. This routine prints the
character in the A register and moves the print position along one
place.

2

REM print a character using
permanent colours

20 FRINT "A":

org 23740

Open channel 2

Lo TE 02
&2 CD 91 16

Program 1.3

23765 IE 41
CALL FRINT

23767 D7
23768 C9
1d a,2

call S6E3

L.OAD ACC. CODE CHR A

ld a,65

Program 1.4 expands the above to enable a ‘short’ word to be
printed. Again channel 2 is opened and the A register loaded with
each character in turn until the whole word is printed.

19 REM Frint a string of chrs.

20 PRINT "HELLO"

o

org 23

766

-~

Open channel

23768 3E 45

Program 1.4

B 4F
1d a,2 (]
call S5&EX
ld a,72

rst 16

1d a,6%

ret 16
ld a,76

rst 16
ld a,76

rst 16
ld a,7%9

ret 1é
ret

You can see however that the above method would become time
and memory consuming if a long word or sentence were to be printed

and would be better tackled in a different way.

There are several options open to us as are demonstrated in
Program 1.5. The main idea is to hold the message as DATA to be
read one character at a time until all of DATA is printed.

19 REM Frint a LONG string
20 Frint "HELF ME"

org 23769
23760 JE 02
23762 CD @1 16
23765 11 E4 SC
2I768 61 67 0o

String length

Program 1.5

Loop

23771 78
23772 B1
23773 OR

23774 C8
23775 1A
1d a,2 23776 13
call 85637 23777 D7
ld de,DATA 23778 18 F7
1d bc,7 DATA

detb 72 69 76 8@

1d a,b
ar 'c

dec bc
ret =z

l1d a, (de)
inc de
ret 16
jr Loop

32 77 69

Inversion I the DE register holds the address of the start of DATA
and is used as a pointer to each character; the BC register holds the
length of the string and an RST 16 call is made for each character in
turn until BC = 0.

org 23760 CALL FRINT STRING
23760 IE 02 ld a,2
2 CD @1 16 call S&33 23771 CD ZIC 2o call 8252
11 DF 5C ld de,DATA 23774 C9 ret
23768 @1 a7 oo ld bey,7 DATA
defb 72 69 746 8@ I2 77 69

Version 2 is in fact the same as version 1 except that the ROM

routine 8252d is used which in fact is a copy of version 1 routine
from.address 23771 to 23778.

arg 23766 28774 173 inc de
: O ZE O 1d a,2 23775 18 FE7 jr Loop
2 CD @1 16 call 5633 END
5 11 ES SC ld de,DATA 23777 CB BF res 7,a
23779 D7 ret 16
1A 1d a, (de) 23780 C9 ret
Ce 7F bit 7,a DATA
20 04 jr nz,END defb 72 &9 76 80 32 77 197
3. D7 ret 16

Version 3 can be used for printing strings of any length but is
limited to character codes 0 to 127. The last character is used as a
marker to indicate the end of the string by having 128 added to its
code, in effect setting bit 7, then before a character is printed a check
is made to see whether bit 7 is zero. If it is then the PRINT loop is
repeated; if not, a jump is made to the END routine which resets bit
7,A, prints the character, and continues with the program, in this
case RET.

Version 3 can be used as a ‘PRINT subroutine’ in a program where
several messages can be stored together with end markers and all
that would be necessary would be to load DE with the start address
of the message required and to make a call to the PRINT subroutine.
A similar, though more complicated, routine is used by the
Spectrum for printing keywords and error messages; this routine
starts at address 3082 d.

The error messages 1 to R as listed in the Spectrum manual
Appendix B can be printed easily by using the RST 8 command. The
byte following the RST 8 instruction points to the error message
required. For example, if you require the message ‘K invalid colour’
which is in fact the twenty-first error message, then use:

RST 8
defb 19d (message number — 2)

4

There is no need for a return instruction as the ROM will
automatically return to BASIC after printing the error.

We can now move on to printing characters or strings at a specific
line and column, as in the BASIC PRINT AT line, column;
‘message’. Again, if you look at Appendix A of the Spectrum
manual, you will see that character codes 6 to 23 are control codes
and in particular code 22 is the code for ‘AT°. Now luckily for us the
RST 16 instruction will recognize code 22 as ‘PRINT AT’ and will
use the next two bytes of DATA as the x,y; coordinates to give the
start position of the message. Program 1.6 demonstrates this using
defb 22,3,5 for PRINT AT 3,5;

1¢ REM Frint string at x,y

23768 61 oC oo ldibe 12

20 FRINT AT Z,S58"Thank you" 1 CD 3IC 20 call 8252
23774 C9 ret
DATA
g 23766 AT 3 9
760 IE @92 ld a,=2
CDh a1 16 call S5&6ZI3 defb 22 T 85
a- 117 DE 5C ld de,DATA defs Thank you

Program 1.6

The same principle can be used for TAB (CODE 23). Note also
that ENTER (CODE 13d) will give the same effect as NEWLINE.

So now we should be able to print any message in any position on
lines 0 to 21 using the permanent colours. All that now remains to
complete normal screen printing is to print messages in local
colours, BRIGHT, FLASH, OVER, and INVERSE.

Program 1.7 shows how this is achieved and follows the same
principles as Program 1.6, in that the control codes for PAPER,
INK, BRIGHT, etc. are held in DATA with the byte following the
control code specifying the parameters.

1960 REM Frinting in colours RESET FERMANENT COLOURS
1016 FRINT AT 4,73 FAFER 2% INK AND ERIGHT @ FLASH @
43 FLASH 13 BRIGHT 13 OVER 135 IN
VERSE 13"Can you read this" 23774 CD 4D @D call 34095
oy i 20T ED ret
e = o 1d a,2 DATH
o1 16 call S&33 defb 22 4 7 17 2 14 4 18 1
ED = 1d de,DATA defb 19 1 21 1 26 1
24 06 1d bc;Eé defs Can you read this
3C 20 call 8252 defh o=t @ s e

Program 1.7

After local colours are used it is necessary to reset the permanent
colours for further printing. In the case of OVER and INVERSE this
requires the resetting to be carried out using RST 16, but the
PAPER, INK, BRIGHT, and FLASH can all be reset by a call to the
ROM routine 3405d which copies the value in ATTR P (23693) into
ATTR T (23695).

Finally, we consider printing on the ‘lower half of the screen, that
is the input lines 22 and 23. This uses exactly the same method as
described for printing on the upper half, except that a different
channel requires opening before RST 16 is used. Program 1.8 gives
an example of how this is achieved.

10 REM Frinting on INFUT lines Wa LT

20 PRINT 80 AT 0,10;"Input line YE774 76 halt
O"sAT 1,103"Input line 1"

=0 FAUSE © I¥ key presed then

EIT H,FLAGS will be SET

’75 FD CB @1 6E bit S, (iy+1)

2577 28 F9 Jjr zZ.WAIT
org 23766 24781 FD CB @1 AE res 5, (iy+1)
23788, C9 ret
Open channel -3 DATH
@ IE FD ld a,253
762 CD @1 16 call S633 deth 22 @ 10
ba) EA SC ld de,DATA defs Input line ©
1E oa ld bc, 30 defb 22 1 1@
IC 26 call 8252 dets Input line 1

Program 1.8

The channel in this case is —3 (253).

The BASIC program is interesting in that it is not mentioned in
the manual that PRINT # 0; will print on the input lines. The
PAUSE 0 instruction is necessary to stop the program without the
instruction @ O.K. which would remove the input line printing.

Similarly this machine code routine requires the equivalent of
PAUSE 0. This is achieved by continually checking bit 5 of FLAGS
(23611) or (IY + 1) after a HALT instruction. The HALT instruction
in effect waits for the next KEYSCAN routine and, if a key is
pressed, sets bit 5 of FLAGS. So we wait in the loop until bit 5 is set
and then return to BASIC. Note that line 22 is counted as line @ and
line 23 as line 1.

One ROM routine that can be very useful for clearing printing on
the input lines but leaves the upper screen intact, can be found at
3652, which is a “clear specified number of lines routine’ the number
of lines are counted from the bottom of the screen and must be
greater than 0. The number of lines is placed in the B register (1-24)
and then the call made; the colours used to clear the lines are those
held in ATTR P. The input lines can be cleared with the instructions

6

LD B, 2

CALL 3652

(Return)

Before moving on to the next Chapter there is an important point
to note concerning user-definable graphics. If you have written a
program that is intended to run on both 16K and 48K machines
then the UDGs will need to be correctly located on each machine.
The easiest way to achieve this is to set up the UDGs starting at
address 32600, that is for a 16K machine, and then to use Program
1.9 to relocate the UDGs as necessary to the address held in the
systems variable UDG (23675).

19 REM Transfer 16K UDG s to 9@ IF bc+ >0 THEN GO TO S@
correct location for 48K machine 1663 REM return
20 LET de=FEEE Z23675+256%FEEK

LET hl=32&600 oarg 2E760

LET bc=166 23760 ED SB 7B SC 1d de
FOKE de,FEEE hl 21 58 7F 1d hl, 32660
LET hl=hl+1 @1 A8 oo ld bec, 168
78 LET de=de+l ED Bo ldir
86 LET bc=bc-1 23772 G9 ret

Program 1.9

PLOT, DRAW,
AND CIRCLE

PLOT

The BASIC command PLOT x,y involves the setting of pixel column
X, row y in the permanent ink colour. Pixel position 0,0 is considered
as the bottom left-hand corner of the screen and 175, 255 as the top
right-hand corner.

In machine language there are two useful entry points to the
ROM PLOT routine: the first of these, which is probably the more
useful and the easier to use, is CALL 8933. Before the routine is
called the B register must hold the value of y (in the range 0 to 175)
and the C register must hold the value of x (0-255). Program 2.1
shows the simple BASIC command PLOT 75,125.

1aoo REM Flot «,y
1919 PLOT 75,175

orig 23760

2T7LG @b 7D ld b, 125
2A762 OF 4R “ld ¢, 75
PE764 CD ES 22 call 8937
RI767 CF ret
Program 2.1

Using decimal instead of hexadecimal numbers it is easier to
follow the program by loading the B and C registers separately. We
could of course have saved memory by using LD BC, 32075 but this
would have been very confusing.

The second entry point is at 8924. This requires the values of x
and y to be placed on the calculator stack with the value of y being
the top value. Program 2.2 demonstrates this with the same PLOT
75,125.

org ZIT6e STACK 175
23766 IE 4R 1d a,75
23767 CD 28 2D call 1156@
STACK 75
gCl CaLL FLOT

it CD 28 2D call 1156@ 23776 CD DC 2% call 8924
23765 IE 7D 1d a,125 23773 CY ret
Program 2.2

8

The ROM routine at 11560 is used to place the value held in the A
register on top of the calculator stack. With the PLOT routine
entered at 8924, the top two values are removed from the stack and
the pixel plotted. The calculator stack thus being reduced by two
values.

The use of the calculator will be discussed more fully in Program
2.5. This second entry point is useful if the calculator has been used
to manipulate a formula for plotting graphs etc.

Program 2.3 shows how PLOT OVER 1, x, y is achieved.

19 REM Flot OVER 1ix,y 2I765 06 28 ld b,4¢
2¢ FLOT OVER 1325, 40 2IT767 E 19 ld €,25
237469 CD ES 22 call 8933
org 23760 SET OVER @
SET OVER 1 SET RITS @ & 1 OF F-FLAG
SET BITS @ & 1 OF FP-FLAG
2R772 AF xor &
22760 ZE O3 1d a,3 23773 FED 77057 1d (iy+87).,a
23762 FD 77 57 1d (iy+87),a 23776 C9 ret

Program 2.3

Thisinvolves the setting of bits 0 and 1 of P FLAG (IY + 87) before
the PLOT call is made, and then resetting 0 and 1 of P FLAG
afterwards. If OVER 0 is not reset then any future plotting or
printing will be carried out as OVER 1.

PLOT INVERSE is identical in form to PLOT OVER requiring
the setting of bits 2 and 3 of P FLAG; the systems variable thus
being set to value 12.

Using entry point 8933 we can write a program to plot a character
anywhere on the screen. The only limitations being that the code of
the character must be from 32 (space) to 127 (copyright), that is, one
that has its eight-byte make-up held in the ROM character
generator.

org 2B760 Byte count
Load L with code of CHR.

23760 2E 7F ld 1,127

YAy TR Sk 23772 06 08 1d b,8

L3

Multipliy x8 Store pointer HL

23764 29 add hl,hl
23765 29 add hl,hl 23774 ES push hl
PRTLL 29 add hl,hl

Bit count

Add to (23606) to find

start of character 2A775 QE @8 1d c.8
23777 7E l1d a, (hl)

237467 ED SB T6 5C 1d de, (23666) -
23771 19 add hl,de 23778 CS push bc

Get plot position x,y 78 C1 pop bc
7 @D dec c
23779 ED 4k 9E SD 1d be, (XY) Boo 20 E8 g mzgl2
5 SRR St push bc

Check i+ EBIT SET

Reset FLOT to «-8,y-1

2ET7BI 17 rla
23784 FS push af
E @E 3D 1d bc, (XY)
2E785 Io 05 jir- neg k1 dec b
ld a,248
add a,c
I+ 5ET then FLOT ld c,a
3 e 5D 1d (XY),.bc
push bc pop bc
ES 22 call 8933 pop hl
pop bc inc hil

Repeat until BYTE count=a
Move FLOT to =z+1l,y

23819 16 D1 djnz L3
L3792 et inc © 23821 C9 ret
2 . ED 4% @E SD ld (XY),bc Xy
23797 F1 pop af defb 1oo 20

Program 2.4

You can see from Program 2.4 that the code of the character
required is placed in the L register (address 23761) and is then
multiplied by eight and added to the value stored in the systems
variable (23606) to find the start of the eight bytes that make up the
character shape in the character generator. The HL register is then
used as a pointer holding the address of the character byte being
examined. The BC register is used as a counter for the eight bit X
eight bit matrix of the character and the A register is used to hold
the byte being examined.

An RLA instruction is carried out eight times on each character
byte and if a bit is set, that is, if after RLA the CARRY flag is set
then the pixel is plotted.

After each RLA instruction the x, y coordinates are updated. The
X,y start coordinates denote the top left-hand pixel position of the
character being plotted. To remain on the screen therefore the value
of y must be between 7 and 175. The value of x can be from 0 to 255 as
any attempt to take x over 255 will result in the value being reset to
0, that is, if C = 255 then ‘inc C’ will give C = 0.

This program can be easily modified to plot characters with a 90
degrees anticlockwise rotation.

10

arg 23760 2T78S To o4 Jr nc,bL1i
Laad L with code of CHR.
If SET then FLOT

2760 2E 60 1d 1,96
ATTH2 26 00 ld h,o

push bc
Multiply =8 22 call 8932
pop bc
2T744 29 add hl,hl
2765 29 add hl,hl
2766 29 add hl,hl Move FLOT to x,y+1
Add to (23606) to find
start of character inc b
SD 1d (XY),.bc
227467 ED SE 36 SC 1d de, (23606) pop af
23771 19 add hl,de pop bc
dec ©
Byte tount jr nz L2
push bc

Reset FLOT to x+1,y-8
2772 vb& 08 l1d b,.8
L3
Store pointer HL
23774 ES push hl 2 OE SD 1d boc, (XY)
inc c©
ld a,248
add a,b
1d b.,a
3o6eE SD 1d (XY),bc
pop bc
pop hl
inc hl

Bit count

1d c.8
1d a, (hl)

push bc

Get plot position :x,y
Repeat until BYTE count=
23779 ED 4B @E SD 1d bc, (XY)

Check if BIT SET 819 16 D1 djnz L3
21821 C9 ret

23783 17 rla XY

23784 FS push af defb 106 20

Program 2.5

In Program 2.5 the x,y coordinates are updated to give a vertical
byte plot instead of a horizontal one as in Program 2.4; there the x,y
start coordinates denote the bottom left-hand pixel, and so the range
for y is 0 to 167.

Having studied the method of plotting a character we can now
move on to our first serious program to plot a message anywhere on
the screen and, to make it more useful, we shall allow the character
height and width to be selected. A copy of the program is available
on tape — LOAD ‘PLOTDEMO’.

Because it is useful as a routine in a BASIC program I have
attached it to a ‘search’ routine so that the parameters
height/width, x/y piot positions, and message can be set up using

11

BASIC variables and so negating the need to POKE them into
machine code. If you wish to use the routine within a machine code
program then the search routine is unnecessary and can be omitted,
the parameters can be copied directly into the printer buffer. The
BASIC program is self-explanatory and allows the reader to
experiment with different values of height/width, x,y, and message
(a$).

The machine code is an extension of Program 2.4. The values of
x,y,h, and w are found using the search routine. This routine works
through the variables store until the required variable CODE is
found and then stores the value of the variable (0—255) in the printer
buffer. Once the simple variable value has been stored, the LEN a$
is found and stored, again (0-255), and finally the message is copied
into the Printer buffer (a most useful place for storing data). The
‘PLOT routine includes a CATCH-ALL instruction and will reset
any wrong parameters to acceptable ones, and consists of five nested
loops:

(L1) Plot a SET bit for WIDTH w
(L2) Repeat L1 for eight bits
(L3) Repeat HEIGHT h times
(L4) Repeat for eight bytes
(L5) Repeat until end of message
But note program comment on FOR/NEXT LOOP variables.

R Y] 1 145

on pPprogram

10
Lot
th
L
sa

12

ooty ot 10k LS PCa1OCS
ta the nachine rfnde call BUT
remenber tO € et the permanent

colour afted ards .

-
w

Doan
g
wno

S~
wuwmm
A ¢
Q-

CW e~
J Jo
L~
Q M
~O 2~
T \M
m~A9
oow
wia
nam
TN\, -
e~ ~
nowe~
J~2
s ~Q

. 45
X
m

LODP CONTROLS
BECONME CORRUP

4D-
muc

0

THE UARIABLES
L

W
N -

oS OVER @: INEK @: FAFER &: RORD 150 PRINT "Flot : RANDOMISE U
ER 3: CL SR o3
19 LET 4: LET y=7%9: LET h=S5: 16 GO SUR 8000
LET w=2: LET a$="STOF THE TAFE" 176 IF INKEY$ ""OTHEN GO TO 17
15 INE : RANDOMIZE USR 22393 @
18 FAUSE 166 175 IF INEEY#$="" THEN GO TO 175
© E w=81: T y=156: LET @ 178 CLS
LET a$="FLOT 180 FRINT "You may set up ink co
@ INEK 1: RANDOMIZE USR 223973 louwrs priorto the machine code ca
TS LE = 't LET y=14¢ 11 RUT remember to reset the p
6 INE 1: RANDOMIZE USKR Z2393 ermanent colour afterwards."
4¢ FLASH 1: GO SUE 806 190 FRINT ""Any incorrect parame
569 FLASH @ ters will be corrected by the ™M
60 FAUSE © code, and if the message is too
76 FAFER 7: INK @: BORDER 7: CL long/tall it will wrap around the
o screen. "
8¢ LET ?: LET v=175: LET h=1 200 LET a$ NOTE": LET y=95: INI
: LET w=2: LET as="INSTRUCTIONS" 2z RANDOMIZE USR 32393: INK @
9@ TNK : RANDOMIZE USR 223973 210 PRINT AT 12,935"DO NOT USE TH
INE ¢ E VARITIABRLES YN whAS FOR/NEXT LO

106 PRINT AT 2,0:"This first dem OF CONTROLS AS THEFROGRAM WILL EE
onstration programwill allow you COME CORRUFTED. "

to "plot messages anywher 220 FRINT "The following progra
e on the screen using BASIC varia M will ask for the parameters re
bles to set theparameters af the quired and then plot yvour message
I " "The character paran 0 G0 SUER 8060
s are setup as follows :@:-' 235 IF INKEY$ " THEN GO T0O 23
FRINT **"Height : LET h=1 t 5
"TUWidth ! LET w=1 to w=D 240 IF INEEY$="" THEN GO TO 240
on 242 CLS : BORDER 4
136 FRINT ! axis @ LET TSI el 245 FLOT @,121: DRAW 255,0: DRAW
295" "y axis ¢ LET y=0 to 175" (= DRAW —255,¢: DRAW &,77
146 FPRINT age : LET a$="3iCH 290 FRINT AT 8,0: "HEIGHT 1-22
R$ TxEAREXREREXR"ICHRS T4 "."WIDTH 1-3 » T 0

axis @-285 7 "o "Y axis -1 bit &, (hl)
VAR — "MFSQAGE TS o i nz g LS

= SR L. inc hl
257 LET vé=" 1d a, (hl)
\ 7F bit 7,a

260 PRINT OVER 13AT 8,2::% Fa G T, -6
262 INFUT h: FRINT AT 8,185hs" " 0bH 06 1d de,é&

i OVER 1:AT 8,6@ivs$ add hl,de
265 FRINT OVER 13AT Q.,0iz%: INF DF e 122

UT w: FRINT AT 9,18iws' OVER 1

PAT S,03vE 7E bit 7, (hl)
2769 PRINT OVER 15AT 1a,05z%: IN F& iF z,-10

FUT x: FRINT AT 16,18s%: " OVE 12 6o 1d de, 19

R 13AT 1@,05vE add hl,de
272 FRINT OVER 134T 11,@5z%: IN DS 3 L2

PUT‘y: FRINT AT 11,185ys" "1 OVE

FO13AT 11,0:5vé 1d (23728),a

273 FRINT OVER 134T 12,03z4:5AT call FIND
1 iz$: INFUT a%: FRINT AT " 5 inc hl
as%i: FOR k=LEN a$ TO 31: FPRINT " inc hl
"§r NEXT k: FRINT OVER 1:AT 12,0 inc hl
ives OVER 1:3AT 13,05vé ld a, (h1)

27% PRINT OVER 13AT 14,93z%: IN ld (bc),a
FUT i: FRINT AT 14,63 INK ii OVER ret

1ivE

”8“ FAUSE S@

INK. I: RANDOMIZE USR =

ld bc.'"'

AT @, a3 "FRESS @ TO ld a, 1:
STOF"SAT 1,05 "ANY OTHER KEY FOR A call SET

NOTHER GO" inc bc
FAUSE ®: IF INKEY$="g" OR IN ld a,121
THEN STOF call SET

: GO TO 245

inc bc

h=1: LET w=2: LET x=24: ld a,

LET R l LET a#$="FRESS ANY KEY" 2 call QFT
< 2z RANDOMIZE USR 32393: INK inc bc
1d a,119
RETURN call SET
STOF ld a, b5
CLEAR I2334: LOAD ""CODE : 6 ld (23728) ,a
0 T S call FIND
906 SAVE "FLOTDEMO" LINE 9800 inc hl
9950 SAVE "LARGE"CODE 32338, 265 ld e, (K1)
org 237660 IRTIE inc hl

F*IND 1d d, (hl)

SE 1d (23Z00) ,de

1d hl, (23627)

ld a, (23728)

cp (hl) push de
ret = pop bc
bit &, (hl) irc Rl
1o -2 55 § o5 SR ld de, 23361
inc hl i5] ldir
1d e, (hl) 0o SE ld hl, (
inc hl sor a
1d d, (hl) ld a,h
add hl,de N =15] shc é.l?&
inc hl a4 jr c.44
Sy =2 1d h,a

o6 Sk 1d (232

5C 1d (Z pop af
5K lcd hl, pop be
3 djnz LF2
push hl 60 SkE 1d a, (2
1d a, (hl) B 5C Ydivhl ,
1d h,o ld ¢hl),a
ld 1,a inc: hd
add hl,hl
add hl,hl
add hl,hl HOF A
o B ld de, 15360 Id a, (hl)
add hl,de shc a,176
ld b,8 GiE a3
1d (hl),a
push bc jr +8
61 SB 1d bc, (23297) 1d &, (hl1)
cp @
1d a, (hl) FronE,+R
push hl lad (h1),176&
push bc dec (hl)
ld b,8 pop bc
pop hl
push bc dinz LF3
rla inc hl
push af pop bc
7E 3P <, FPLOT djnz LF4
SR ld hl, (23 3 SB ld a, (23299)
SC ld a, (2 add a,a
32498 89 add a,l add a,a
32499 L2 RO 5C ld (23728),a add a,a
ip SEIF ld 1,a
SC ld a, (23728)
> 1d bc, (23728) add a,l
Sk ld (23296) ,a
push bc SE 1d (2372 i
S0 1d bo, (23728) SR
push bc SC
call 8937
pop bc
inc c SR ld a, (23300)
ld (23728) .bc dec a
pop bc ret
djinz LF1 SE 1d
4= jip LFS

The machine code in Program 2.6 starts at 32393. The first
routine, from 32393 to 32418, initializes the BC register as a pointer
to the printer buffer and calls the SET subroutine to set the code of
the variable being located into address 23728. The SET routine in
turn calls the FIND routine to locate the variables code. The value
of the variable (0-255) is then stored in the printer buffer address
pointed to by the BC register. So variables x,y,h, and w are found
and stored consecutively. The routine from 32419 to 32442 finds the
code of variable a$, the length (0—255) is then stored and finally the
string copied. The routine from 32443 to 32458 checks the value of y

15

(and if it is greater than 175 sets it to y — 176) and then stores the
values x and y back into 23296/7 and also 23728/9.

The remaining machine code is an extension of the character plot
routine with the additional loops to PLOT the pixel ‘width w’ times
for ‘h lines’, a check being made after each ‘line’ to ensure that the
next PLOT position stays on the screen. The routine from 32540 to
32554 checks the next PLOT position and gives a wrap-around
effect if it is off the bottom of the screen.

Without going too deeply at this stage into the CALCULATOR
routines we can look at a program that makes use of PLOT at entry
point 8924.

Program 2.7 shows how a sine wave can be plotted using
CALCULATOR to manipulate the formula:

88 + 80 * SIN (A/128 * PI)

1096 FOR A= TO 255 detb S5
1016 FPLOT A,88+80*SIN (A/128%F1) Stack FI/2
1020 NEXT A defb 163
Duplicate top values
defb 49
Add top 2 values (FI)
axia defb 15
eca Zjﬁbw Multiply top 2 values
o N (A/128%F1)
- " . defb 4
tagé‘_c’ Gl M SIN top value SIN (A/128%F1)
STORE A defb 31

Multiply top 2 values

25761 FS posiy gt 80*SIN (A/128%F1)
STACK A teth @
23762 CD 28 2D call 1156@ e ben B veliss
23765 SE 58 1d] a3 66 8+80%8IN (A/12BXPT)
23767 CD 28 2D call 11560
23776 3E S50 1d a,86
23772 28 2 : 566
mpsn ol
e e ROR End calculator routine
23776 FS push af Top 2 values are
el calliillSeo A and 88+BOXSIN (A/128%F1)
23780 3IE 86 1d a,128 erb mr
23782 CD 28 2D call 11560 EALL PLOT
) - 23795 CD DC 22 call 8924
STACK 88 86 A 128 e e B
23798 F1 pop af
23799 3C inc a

USE CALCULATOR : not zero (256)
FE @0 cp ©
P2 20 DS jr nz,LOOF

ce ret

23785 EF ret 40

Divide top 2 values (A/128)

Program 2.7

The CALCULATOR routine can be made to perform complex
arithmetic by the use of literals. These are in fact ROM calls to
perform calculations involving, usually, the top two values on the
calculator stack, but may also be applied to string handling. For

16

instance, if the top two values were 1234 and 2, and Literal 4 were
called from within the CALCULATOR routine, then these two
values would be removed from the stack, multiplied, and their
product put back on top of the stack; the stack would therefore be
reduced by one value and the top value would be 2468.

Positive integer numbers can be placed on the stack by means of:

STACK VAL A — CALL 11560 OR STACK VAL BC — CALL -
11563.

In Program 2.7 I have used STACK VAL A to place in order,
‘variable A’, 88, 80, ‘variable A’, and 128.

The USE CALCULATOR routine is then called by the RST 40
instruction. The CALCULATOR routine works through the bytes
following RST 40 and acts on each one calling further subroutines
as required. In our program the next byte is 5, and Literal 5 means
‘GOSUB DIVIDE’. The top two values on the stack are then taken,
the top one divided into the one underneath and the answer placed
back on the stack. The next byte in the routine is Literal 163; this
tells the calculator to ‘STACK P1/2’.

Literal 49 is DUPLICATE TOP VALUE

Literal 15 is ADD TOP TWO VALUES - thus restacking the sum
Literal 4 is MULTIPLY TOP TWO VALUES

Literal 32 is SINE OF TOP VALUE - thus replacing top value with
its sine

There are many more literals that can be used in games programs
and these will be discussed in future Chapters.

The last Literal 56 is ‘END CALCULATOR ROUTINE CALL’
which must be used to return to your machine code program. One
other important point to bear in mind when using the
CALCULATOR routine is that, before a ‘safe’ return to BASIC can
be made, the stack must be cleared of all values previously stacked.

At the end of our CALCULATOR routine we are left with two
values on the calculator stack, the top value being ‘88+80 * SIN
(A/128 * P1) and the other value ‘A’. The PLOT call 8924 then takes
these two values, thus resetting the stack, and PLOTs the pixel.
The value ‘A’ is then incremented and the LOOP repeated until ‘A’
= 256 (that is, ‘A’ is reset to 0).

You can see from this program that the CALCULATOR’s literals
are very useful and that a fairly complex formula has been dealt
with in just eight bytes. In fact it takes more bytes to set up the stack
than to perform the calculations.

17

DRAW

Again there are two entry points in ROM for the DRAW x, y
command. The first point call 9402 requires the ABS value of x to be
in the C register and the ABS value of y in the B register. The DE
register is used to hold the SGN of x and y; the D register holding
SGN x (1 if positive, 255 if negative) and the E register holding SGN
y. Program 2.8 is a modified version of Program 2.7 to demonstrate
the DRAW command.

5 FLOT ©,95: DRAW 255, RA778 CD BA 24 call 9462
16 FOR a=6 TO 255 Restore H'L
29 FLOT 120+40%5IN (a/16%F1) 2n781 D9 @My
DRAW @, ~50 » E1 pop hl
N0 NEXT 1 DY @i
AF or a
] 76
Flot @,9 F& push af
1 @b SF 1a by 25 CDh 28 2D call 11560
- 00 ld o, IE 78 ld a,12a
ESi k2L call 8933 CDh 28 2D call 1156@
IE 28 ld &, 40
erx » CD 28 2D call 1156@
push hl F1 pop af
RS F& push af
o CD 28 2D call 115466
QET7T70 Qb4 09 ld b.e JE 10 ld a,16
23772 OE FF lid' ©,255 CD 28 2D call 11566
14 &1 ld dg1 EF rat 46
1E @1 1d e, 1 S5 167 49 15 4 Z1 4 15 56

23819 CD DC 22 call 8924 ld e, 1
Store HL’ call 94a2
2 D? e
3 ES push hl e
23824 D9 e pop hl
DRAW @, -5a e
23825 a6 32 1d b,Se pop af
inc a
cp 9
2IE827 VE 0o 1dic,o yelnzgll
27829 16 FF 1d d,255 ret
Program 2.8

Note that before DRAW is called the HL prime register must be
saved (in this instance by pushing it onto the stack) because it is
used in the DRAW routine.

The value of the HL prime register must not be corrupted during a

user-written machine code routine or the program will crash on
returning to BASIC. The HL prime register value is restored after

the DRAW command. DRAW OVER and INVERSE are set in
exactly the same way as PLOT OVER/INVERSE.

The second entry point for DRAW x,y requires the top two values
on the calculator stack to have values x and y, again y being the top
value — CALL 9335. Should you wish to use this second entry point
then you will need to read Chapter 7 to acquaint yourself with the
Spectrum method of storing five-byte negative numbers on the
calculator stack.

DRAW x,y,a

The entry point for this BASIC command is 9108 and requires the
value of X, y, and a to be placed on the calculator stack (in that order,
that is, ‘a’ on top). Again Chapter 7 will explain how negative
numbers are stacked. Again the HL prime register must not be
corrupted.

CIRCLE x,y,r

The entry point for this BASIC command is 9005 and requires the
values x, y, and r to be the top values on the calculator stack. The HL.
prime register is saved during the CIRCLE call. Program 2.9
demonstrates a method of drawing concentric circles to give a ripple
effect.

19

16 REM Circle x,y.r BOpyat
20 FOR B=1 TO 2 ot
0 FOR A=1 TO 21 STEF 2 28 2D call 11569

4¢ CIRCLE OVER 131728,88,A (IMFORTANT ')
S6 NEXT A

6O NEXT B Ex

push hl
e
org 2I766
For RBR=1 70 2 Call CIRCLE
76D 0L 02 ld b,2 23788 CD 2D 2= call o5
ES push bc Restore H™LT
For A=1 TO 21
pop hl
QA7EET IE o1 ld a,!l e
L.1
2765 FO push af
pop af
Set OVER 1
inc a
2A766 FD 36 57 6T 1d (iy+87),73 inc &
17 cp;: :
Stack DATA DC jir inz il
pop bc
23770 IE 86 1d a,128 D6 djnz L2

Reset OVER @

CD 2D call 11566
3 ld a,88 FD 246 57 00 1ld (iy+87),
23777 CD 28 2D call 11560 ce ret

Program 2.9
20

You will notice that the program is almost as slow as the BASIC.
This is because the ROM CIRCLE routine is quite lengthy. If a circle
is required in your machine code program it would be quicker to
hold the plot points as DATA and to use a loop to plot each pixel.

21

3 COUNTING

Most games programs and many ‘serious’ ones require some form of
counting. With games programs this is mainly used to keep an
account of the score, lives lost, time taken, etc. [know three methods
of counting and displaying the result on the screen. The first is so
memory consuming and unsightly that only a brief outline of the
method will be given. This method involves the setting up of the
MAX number allowed as DATA. For instance if you were counting
from 0 to 999999 then six bytes of DATA would be reserved and
initialized to 000000. A print string routine would then be required
to print all six zeros on the screen. When the counter is increased by
one it would then be necessary to start at the units byte, check that
it is not nine, add the one to the units and then print string. If the
units were nine they would be reset to zero and the tens column
checked for a nine, and so on. After printing the string a check must
be made to see whether all six bytes are set at nine and if so the
count ends. Counting up or down in steps greater than one would
involve placing the ‘increase by one’ counter in a loop.

The second method is used for counting up or down within the
range 0 to 65535 and is demonstrated in Program 3.1.

23781 ZE 16
2I78E DT

ld a, 16
rat 16

org 2766
Set counter to zero

2I760 91 6o oo Call FRINT VALUE ON STACE
Lt

2A76F ED 47 Eo SC 1d (2I728) ,bo

1d bo,o
2ETB4 CD EX 2D call 11747

Get value and add 1

Stack value
23787 ED 4k Bo SC 1d be, (2E728)

23747 CD 2B 2D call 11563 23791 03 inc b
Open channel 2 Retuwn if zero
776 IE @92 ld a,b
772 CD @1 16 or
ret =z
Set FRINT AT 11,16 or key press

IE 16 ld a,22 23795 FD CE 91 6E bit 5, (iy+1)
D7 ret 16
IE @R ld a,11 28 DA jir z,L1
25 D7 ret 1é ES ret
Program 3.1

22

In this program use is made of a ROM routine that prints the value
on top of the calculator stack: call 11747. The spare bytes in the
systems variables 23728/9 are used to hold the value of the counter;
hence the range 0 to 65535. All we need to do is then fetch the
current value and add one, put the new value back into the
COUNTER, STACK the value, set the PRINT AT parameters and
call PRINT VALUE ON STACK. If the value in BC becomes zero
(that is, 65536) a return to BASIC is made.

I'have also included an EXIT routine from address 23795 to 23800
sothat a key press will also return to BASIC. This is advisable as we
weould otherwise be stuck in the LOOP until the counter had
reached 65535 and that would take several minutes.

The third form of counting again involves the use of the
calculator. Up to now we have regarded the calculator stack asjust a
method of storing values without going into too much detail about
how they are stored. The values are actually stored on the stack in
their five-byte form, that is, it takes five bytes of information to
define any number that the computer can cope with. This is
discussed in more detail in Chapter 7. In Program 3.2 we make use
of this fact to count from 0 upwards in steps of 250 with no upper
limit. In fact, however, once 99 999 999 has been reached the PRINT
STACK VALUE routine will change to printing the value in its E
form (1E + 9 etc.), but one hundred million is probably high enough
for any games scoring.

arg 2T76HG Set FRINT AT 11,16
Use CALCULATOR 23774 JE 16 ld a,22
D7 rst 16
DET76HG EF rat 40 IE OR ld a,11
D7 ret 1é
ILITERAL STACE @ 2 3E 19 ld a,16
cleafty 146 rst 16
End use CALCULATOR Call FRINT VALUE ON STACE
clefly S5é
23785 CD EZ 2D call 11747
Hl.. set to STACKEND-S
atter deth 56 instruction STACE 250
L1 2IE788 ZE FA 1d a,z280
Copy value into FRINTER BUFFER
2T76T 11 00 SR ld de, 23296 2D call 11566
2E7HE 21 95 00 lad bBe,S
2769 ED Ré ldir
SR ld hl,23296
SR 65 S5C 1d de, 53
(515] ld be,5S
Open channel ldiv

53 65 5C 1d (2F653) ,de
IE @2 1d a,2
3 CD a1 14 call 5633 Use CALCULATOR

23

22809 EF rst 49 23816 28 C9 jr z.L1

LITERAL ADD Remove last value from STACK

defb 15
End use CALCULATOR
defb Sé

27818 2A &5 SC 1d hl, (23653)
23821 2B dec hl
26822 2B dec hl
2 dec hl
dec hl
dec hl
ld (23653) ,hl
ret

Check for key press

23812 FD CB 01 6E bit 5, (iy+1)

Program 3.2

The program has several important routines that require
explaining. The setting up of the value 0 is carried out on the
calculator stack by defb 160, which is the literal STACK 0, te five
bytes on top of the stack are then taken and copied into the printer
buffer to be used as a store. This is carried out by an LDIR
instruction; the value of HL is set for us by the calculator routine as
(STACKEND - 5). The initial value is printed at 11, 16; by the
PRINT VALUE routine and the stack is thus cleared.

And so to the ADD 250 routine. This requires the value of 250 to
be placed on the stack by means of STACK VAL A, and then the
‘stored’ value placed on the stack. This is carried out using LDIR.
The HL register is set to the start of the stored value; the DE
register is set to STACKEND. After the LDIR instruction the new
address of STACKEND must be put back into the systems variable
23653. The calculator is used to add these two values together and to
repeat the STORE and PRINT VALUE routines. Again a key press
routine is added to allow exit from the counting, but note that the
stack is reset by removing the last value before a return to BASIC is
made.

Counting down would require the start value to be placed on the
stack (See Chapter 7 for numbers greater than 65535) and the
Literal 3 SUBTRACT used. Note that in subtracting, the ‘top’ value
is taken away from the one underneath. At the end of each count a
check would be required to see whether the ‘store’ bytes had all been
set to zero and, if so, the count ended (or if the second byte has bit 7
set the number is negative). In counting down it is also necessary to
clear the screen of the existing number before printing the new one
because, if a change is made from say 1000 to 999, the “units zero’
from 1000 would remain on the screen and the number would
appear to be 9990.

The COUNTDEMO program, available on the tape, shows how
the counter routine can be used for reaction timing.

24

The BASIC program is self-explanatory and is mainly involved
with the printing of instructions. The DATA statements are used to

hold parameters of x, y, h, w, and a$ for LARGE printing as
discussed in Chapter 2.

RE M«

Thais pro
counting
ar

3 A
b
TINER 4

T o

;4
(3
1

Y

25

12:FAFER 6:CLS
DATA 87,143,1
DATA

"COUNT™
'SLOW"

DATA 2. "AVERAGE"
DATA 2, "Goop"

DATA 2,"VERY GOOD"
DATA 2, "EXCELLENT"
DATA "NOT TRYING"

DATA @,31,1,2, "ANOTHER GO 7

DATA 55,125,5,2, "THANK YOU"
DATA 103,79,3,2, “for"

DATA 71,56,5,2, "FLAYING"
DATA 24,79,5,2,"STOF THE TAF

5 DATA 15,167,1,2,"REACTION TI

DATA 15,164,2,2,"

126 DATA 24,15,1,2,"FRESS ANY KE

125 RESTORE 106
176 FOR a=1 TO 4

140 FPAUSE 25
166 INE 2: GO SUE 9000

170 NEXT a
180 FAUSE @: RBORDER S: FAPER &:

INK. @: CLS

196 RESTORE 105

220 INE ©: GO SUER 9006

250 PRINT AT 2,0:"This program d

emonstrates M/codecounting by com
bining a REACTIONTIMER and a M/co
de count routine"

260 FRINT *"The Spectrum will

select aletter, (A to Z) an
d print itFAFPER &6:INK 6."

270 FRINT ""The M/code will then
change thelNkE to INK @, select
CAFS LOCEand count the time vy

ou take topress the same key."

280 FRINT " "There will be a r

andom delaybefore the letter sel
ected willappear."

290 FRINT AT 26,53 "FRESS ANY KEY

TO FLAY"

oo IF INEEY$<:"" THEN GO TO Zé

IF INKEY$="" THEN GO TO 362
CLS
RESTORE 165: INK 1: GO SUE 9

INK S: GO SUB 9000
RESTORE 15: INK 2: GO SUBR 9@

@ INKE @: FLOT 162,114: DRAW 56
«©@: DRAW ©,-38: DRAW -5&,0: DRAW

(RND*26+65)

b LET y=111: LET h=
4: LET w=4: LET a$=CHR$ =z
400 INE &: LET c=USR
410 FOR a=1 TO
a

26

420 INE @

47@ LET c=USR 23760

440 LET a=FEEE 2Z728+256*FEEE
729

450 IF a>=14¢ OR a=@ THEN RESTO
RE 86

4466 21464 THEN RESTORE
47 12¢ THEN RESTORE

486 a4 166 THEN RESTORE 40
490 a#85 THEN RESTORE 5@

S0 IF a<70 THEN RESTORE &6
516 GO SUE 7000

7006 RESTORE 99: INK 1: GO SUB 9@
€34

7616 IF INEEY®<:"" THEN GO TO 76
16

7020 IF INKEY$="" THEN GO TO 762
(4]

LEY d$=INKEY$

IF d#$<:"y" THEN GO TO
760 IRENTH USKR 23842: GO TO

8000 RESTORE 95

BOOS FOKE 23847%,20
LET c=USR 23842
FOEE 23847,18
FOR a=1 TO =

GO SUB 000

NEXT a

STOF

READ x,y.h.w,a$
LET c=USR Z2E9X

RETURN

0 7T0 5

906 SAVE "REACTION" LINE 9806

9956 SAVE "LARGE"CODE =
1e R *2? \ 8TEF ™ CLEAR THE

N @ AVER !'?X™ RETURN 6 76af) RETU

RN ¢ NEXT 2?7 OR STEF +- STEF

? BEEF
LEN (7 CLEAR THEN ?n(0

S, 265

REEF
UT %' \FEEE VERIFY (GO SUER CVAL

N CLEAR THEN @g:

org 23760
Find variable =z

- 7A ld a,122
27681
81 SC 1d be,
23765 CD 7D 7E call =

Set CAFS LOCE
23768 FD CB 0 DE set 7, (iy+48)

Attribute colouwr swap

23772° 21 006 58 1d h1,22528
7E 1d a, (thl)
3 cp 54

jr nz,L2
1d (hl),48

CLEAR 32734: LOAD ""CODE : G

27

Feplace FAFER & INE ©

784 FE 5B cpy, il
nd of ATTRIRUTES 7
RIT7BL 20 F3 ar

Start

counting

@1 00 a0 1d bec,o
count on stack

S push bc
count on CALCULATOR

2 CD 2B 2D call

11563

Set FRINT AT 6,14

ld a,2
16 call S633
1d

D7
IE aE
D7 ret 16

count
Cn EZ 2D

Frint
23809

and add 1
pop b
inc bo

Get count
BE81E i
20813 63

count < & 5

78 ld a,h
E1 ar ¢

28 aoF itz END

key pressed

23818

FD CB @1 6E bit 5, (iy+1)

2EBRD 28 DF JE Eed S
Find INEEY$
2E824

EAoe8 5C 1d a, (23560)

hl,273681
cp (hl)

238
Restore lower case

FZ D
E. ret
bottom 18 lines
Y 06 12 ld b,
CD 44 o call
£S5, ret

Program 3.3

4 RANDOM NUMBERS

Random numbers are an essential part of most games programs
such as the random delay and random choice of letter in the
REACTION TIMER program (Program 3.3) of Chapter 3. The
setting up of a random number in machine code is actually very easy
and, depending on the ‘random/range’ of the number, can be tackled
in one of two ways.

The first method, which does not actually produce a true random
number, but is good enough for many games, is to use the FRAMES
and SEED variables in a way in which they were not intended to be
used. That is, if the random number range is 0-1, 0-3, 0-7, 0—15,
0-31, 0-63,0-127, or 0—255 then this method is worth considering.
The routine requires the HL register to be loaded with the value of
SEED (23670) the DE register to be loaded with SEED high
byte/FRAMES low byte (23671), the two register values added
together, and the sum stored back into the SEED variable for the
next ‘random number’. The A register is then loaded with either H
or L and an ‘AND a’ carried out to mask out the unwanted bits;
hence the random number range as above. Program 4.1 for instance
gives an example of INT(RND * 32) as it will mask out bits 7— 5 of
the value in the A register and so leave numbers from 0 to 31.

org 2076¢ 3 CD @1 14 call 5633
19 Random numbers 3 IE 16 ld a,22
2ITH0 O6H VA ld b,16 5 D7 ret 1é&
L1 6 78 ld a,b
RI7LZ BS push bc 7 D7 rat 16

oad HL, (SEED) IE 9A 1d a,1o

76T 28 76 SC 1d hl, (23&6870) a D7 rat 16

béH ED SB 77 SC 1d de, (23671)
23779 19 add hl,de Get random number and put
orr CALCULATOR STACHK
Modified SEED for next number 791 F1 pop af
RAETT7L 22 76 5SC 1d (23670) ,hl 79 CDh 28 2D call 11566
79% CD EZ 2D call 11747

Mask BITS 7-9 Frint it
2U774 7D 1d a,l
23775 E& 1F and 31 rnumber count

8 C1 pop bc
Store Random number

23777 FS push af repeat until 10 numbers
t PRINT AT b,1@ D2E799 1o D9 dinz L1
23778 3IE. 02 ld a,2 258601 C? ret

Program 4.1
29

FROGRAM 1 SAMFLE FRINT OUT
&

~e

e

8
9

=
=9

24
1
10
As previously stated this is useful if a ‘not so random number’ is
required in one of the above ranges. It can be taken a stage further
to evaluate, for example, INT (RND * 23) by:

LD A, H
AND 15
LD H, A
LD A, L
AND 7
ADD A, H

You will notice in Program 4.1 that the B register is used to hold
the loop count (ten times) and that this value is also used for the
PRINT AT b, 10; routine. The sample print out shows the
randomness of the routine.

To produce a random number in the same way as the BASIC
command INT (RND * n) we will need to use the RND ROM routine,
but unfortunately this is not available with a call RND instruction
asthe routine has no return after it has been evaluated. The routine
occupies ROM address 9725 to 9765 and uses the calculator, yet
again, to modify the value of SEED. It starts by getting the existing
value from SEED, and ends with the new value duplicated on top of
the stack. The top value is removed and used to update SEED. The
remaining value is modified further to give a value from 0 to 1 (but
not 1) which is used for RND. To use this routine it is necessary to
copy it into RAM and call it from your program as a subroutine.
Program 4.2 shows this method used to produce INT (RND * 12345)
and print 44 answers using CHR$ CODE 6 to print in two columns.

INT (RND*12345) 44 Random numbers
27468 06 2C 1d b, 44
L1
org 23760 23770 CS push b
Cl.s
COFY of ROM 9725 to 2765
23766 TE 02 ld a,2
23762 CD o1 16 call S6TF 23771 ED 4R 74 SC 1d bo, (23670)
23765 CD 6E @D call 3475 23775 'ED 2B 2D call 11567

30

23778 EF rst 4@ 1d a, (hl)
STACE (1) and a
deflb 161 G a2
sub 16
1d (hl),a
+
defb 15

STACK (75)

defb 52 55 22

1d bc, 12345
call 11563

* ret 40
defb 4
STACE. (6L5537) defb 4
defb 52 128 65 @ @ 128 LITERAL *INTEGER”
LITERALS defb 39
defb 56 2 End CALC ROUTINE
STACE (1) defb %Sé
dath 161 Frint value on STACE
= 21 3E 02 l1d a,2
defb 3.
Duplicate
defb 49 23823 CD o1 16 call S633
End CALC ROUTINE : CD E3 2D call 11747
defb 56 .
Fut top value into BC IE 096 ld a,é
REGISTER (INT @-65535) %1 D7 ret 16
23797 CD A2 2D call 11682
Get count

Store new SEED 23832 C1 pop bc
278606 ED 43 746 SC 1d (23674 ,bc djnz L1
Manipulate EXFONENT BYTE ret
Program 4.2
SAMPLE FPRINT OQUT OF ABOVE FROG.
1857 55
76b6b6 7091
1037 3758
10296 6834

12044

7178

11711

7150

106973

The RND routine uses several new literals which may be of use in
other routines:

LITERAL 161 is STACK NUMBER 1

LITERAL 52 is STACK DATA (this is normally a number
expressed in its compressed form — see Chapter 7)

LITERAL 50 is n — mod —m

LITERAL 2 is DELETE (the quotient)

The last two literals are probably of little use for games programs.
The routine — CALL 11682 — is used by the ROM to remove the top
value on the stack and to place the integer value in the BC register.
The integer value is in this case rounded up or down as necessary to

31

the nearest whole number. There is also a similar routine — CALL
11733 which places the top value in the A register in a similar
manner. The copied ROM routine ends at 23810.

The routine from 23811 to 23820 further modifies the RND value
on the stack. The value 12345 is stacked and then multiplied by the
RND value. A new literal is then used, literal 39; this removes any
decimal value from the result of 12345 RND rounding down the value
(as in BASIC RND), and so leaves INT (RND * 12345) as the top
value on the stack. The PRINT VALUE routine is then used to print
44 values in two columns and the results show that these values are
truly random.

Demonstration Program 4.3 shows how RND is actually used. In
this case RND is used to print random-height skyscrapers in
random characters of random colours and could be used in the ‘city
bomb’ type of program. All the UDGs for a complete program are
already set up and you may like to develop this program. The tape
program ‘RNDDEMO’ uses the BASIC program to produce the first
screen display; this is held on the screen for a few seconds, and then
the machine code routine is used to print the next display

demonstrating the speed of Machine Code as well as the RND
function.

One point to remember when using BASIC RND with machine
code USR calls is to use LET ‘variabie’ = USR ‘address’ to call the
machine code as RANDOMIZE USR ‘address’ will affect the random
number generator. You may also use PRINT USR address if you
don’t mind the value held in the BC register being printed on return
to BASIC. In the machine code routine the PAPER and INK colours
are set up using LD (IY + 83), 47 instead of LD A, 47: LD (IY + 83)
A, as in previous examples, thus saving memory and showing the
usefulness of the IY register as a pointer. This is further
demonstrated later in the program where 1Y is set to 23296, the
start of the printer buffer, and used to LD (23296), 22 (AT) and LD
(23299), 16 (INK),. When altering the value held in IY, however,
care must be taken that, if a ROM call is made that uses the 1Y
register, the value should be reset to 23610 before the call is made or
the ROM routine will be corrupted and may cause a crash.

Before the random number routine is called the A register is
loaded with the RND * n number and this then stored at address
23681 (an unused address in the systems variables). This number is
then picked up in the RND routine and used to obtain INT (RND *
n), the value being placed in the A register by call 11733 before a
return from the routine is made. The printer buffer is used to hold
the PRINT information in order: AT (22), x, y, INK (16), b$, a$.

32

REM 7 STEP & CLEAR £3.:7
BORCER @: FRFER S I
FOR

LET b$=CHR% IMNT IFNEr¢l
PRINT AT L-1,c:"&"

FOR a=L TO 2@

FRIMNT AT a2 ,C ;CHR% 1E+b%+3%
NEXT 2

FRIMT AT 3,c:"@"

MEXT ¢

LET #%=0: LET 4=8: LET as%=
30 FPRINT RT = g;af

14 PRINT "O: i fiL 1oo00 W BOME: |
100 M o3l 100 W

150 FETUPN

JOO CATA 24 ,79%,5,2,"STOF THE TH

"RAMDOM HUM

-9
o :
@0
m

o2 MO R T O o |

=REEn

RUSE S0O:
@ PAUSE ©: CL3
PPINT INK @;RAT 2,0, "Thisz
5

a
=

dﬁmﬁn’?la
in Machine
: e e

T+

[ololotototuliie Nula el

=11
R ~TDRE s2
PARAUSE 100
FLASH 1: It
ZBRO: FLRS
PRAUSE ©: C
LED Z =

GO JUE 2000

h

SR RS o N (1)) e e B T SN TR I 1 WO)

Y
NEQAQEARGMEME DT m= 0

e

O@

s
GG

[mFwdp:

[
Y
m

10=é GO TE
Z0eR FOR a

o

10
TO 42@: MEXT a: CL?

RESZTORE S30
11 GO SUB S0

FOR a=1 TO 2@8: MEXT a: RET

BT GO ToO 11@
REARD
LET 3
RETURM
CLEARR 6”74.
"a": LOAD

J

org 2E760

BORDER @

33

IE aa
2 CD 98

=
b

INE

~

FD 3&

o
i

3E
cD
CD

oz
a1
bE

16
@D

1d a,o
call BaS%

1d (iy+83) ,47

Set 1Y as FOINTER

23777 FED .21

[1%]

23781 FD
23789 FD =

(£15]
a3

Reset 1Y
23789 FD

Column Count

3793 Sk 1F

1

UI-IJ

3795

2]

2 02 SE

19-INT (RND*16)
23798
23800
278603
27806
23807
23869
27816

OA
81 SC
&1 5D

3E 1

i

@1 SE

INT

(RND*2+148)

3E
32
CD
Cé

bt
s

(504

5C
5
SE
FRINT AT x-1,y
23837 3E 02
a1 16

16

SE

ld

1y, 23296

1d (iy+@),22

(iy+3) ,16

1d iy,27616

a, =1

ld (22298),a

1d a,1

1d (23681) ,a
call RND

1d 1,a

1d a,19

sub 1

1d (23297),a

1d a...;

ld (23681),
call RND
add a, 148
ld (22701) ,a

1d a,4

ld (23681),a
call RND

ld (23360),

PSR

CHR% 147

ld a,2
call S&6T3
ld a,22

FOR a=x TO

(= 15)
[522)
3C
@1

12 el
15

EC

w
m

26
a.y CHR$

SE
fars)
26
SE

FRINT AT a,y CHRS$

23877 3IE 99

23879 32 oS
3JE a7
I2 04
11 @6
a1 0b6
CD ZC
3A 02
3D

23900 FE FF
NEXT COLUMN

DITOED 2O 93
23904 C9

SE
SR
00
20
SE

ROM RND ROUTINE

15
deib 65 @ o

3931 CD A2
ED 472

INT (RND*FEEE

745 A 81

76 SC
2D
SS
128 S
2D
76 SC

52

DL

rst 16

ld a, (23297)
dec a

rst 16

ld a, (23298)
rst 16

1d a.147
rst 16

lé+bé+as

1d de, 23296
l1d bc,6
call 8282
ld a, (232
inc a

ld (23297),a
cp 21

97)

jr nz.lL2

153

1d a,153

1d (23301),a
1d a,7

1d (23300) ,a

ld de,23296

1d bec,6

call 8252

ld a, (23298)
dec a

e

cp 255

itz L
ret

1d bc, (23467¢)
call 11563
rst 40

22 4 52 128

2 161 3 49 S6

call 11682

ld (2FT6786) .bc
ld a, (hl)

and a

jr z,L3

sub 16

1d ¢(hl),a

(23681))

1d a, (23681)

35

L 11540
46

SS CD DS 2D call 11733

E9 ret

Program 4.3

36

5 THE KEYBOARD

In machine code there are two methods of reading the keyboard.
Both of them are useful but the method chosen depends on the type
of program.

Using the LAST KEY variable

The Spectrum ROM contains a KEYSCAN and DECODE routine
which is automatically called 50 times every second. The routine
also updates the FRAMES count.

The character code of the last key pressed is stored in the variable
LAST KEY (23560) and if it is a new key then bit 5, (IY + 1) will be
set. Incidentally the HALT command waits for the next KEYSCAN
call to be made before continuing with the machine code routine.

With the above information we can write a program the
equivalent of PAUSE 0.

orqg 23760

WAIT FOR KEY PRESS

L1

37660 FD CE @1 6E bit 5, (iy+1)
27764 28 FA jr oz.L1

23766 FD CEB ©1 AE res S, (iy+1)
CONTINUE WITH FROGRAM

23770 C9 ret

Program 5.1

You can see that in Program 5.1 bit 5, (IY + 1) is continually
checked to see whether it is set and only when it is (indicating a new
key press) will the program continue. Note that it is necessary to
reset bit 5, (IY + 1) afterwards, otherwise if a similar PAUSE
routine is used before the next KEYSCAN call bit 5 would still
appear set and the PAUSE will be skipped.

Using IN A, (C)

This is identical to the BASIC IN command, reading the half row
37

specified by the value held in the BC register, and is discussed in the
Spectrum manual. The value returned in A indicates which keys
are pressed in that half row. Each half row contains five keys, and
bits 4— 0 of A hold the state of these keys (bits 7— 5 are normally set)
bit 0 is used to indicate the state of the ‘outside key’ in the half row
and bit 4 the state of the ‘inside key’.

With no keys pressed the bits are set and A will hold 255. If a key
is pressed its bit will be reset. For example if key @ were pressed then
bit 0 would be reset and A would hold value 254. You can see that
with this method we have the ability to read more than one key
being pressed at the same time by either checking the value of A or
the individual bits of A. This would be useful in a game for two or
more players or for moving things in two directions (for example
upwards and forwards) at the same time. Program 5.2 demonstrates
the IN command used to wait until key 0 is pressed.

org 20760
READ HALF ROW &-6

L1

2760 01 FE EF 1d bec,61478
3763 ED 78 in a, (c)
CHECE KEY @ FRESSED
23765 CR 47 bit @,a
eA767 C8 ret =z
23768 18 Fb ir L1
Program 5.2

The ROM KEYSCAN call is made 50 times every second even
during our own machine code program and, in doing so, slows down
the program. We can stop this interruption to our program if we
need extra speed, for example in pixel-scrolling, by the use of the DI
instruction. However this will mean that while the interrupt is
disabled we are unable to use the routine LAST KEY to read the
keyboard (unless we call the ROM routine ourselves) and must
resort to using the IN instruction. Program 5.3 shows the DI
instruction being used.

org 20760 CHECE EEY ® FRESSED
DISSARLE 2A766 CR 47 bit @,a
22768 20 F7 ir nz,L1
23760 F3 di
ENARLE

READ HALF ROW &-6

2I770 FR ei
{5y
3761 o1 FE EF ld bc,b61478
257464 ED 78 in a, (c) S877 35 B ret
Program 5.3

38

Note that the EI instruction must be used before a return to
BASIC or the keyboard will be useless. Try the program without the
Elinstruction and see what happens. No lasting damage will occur,
but the Spectrum will have to be switched off then on again to make
the keyboard function.

Program 5.4 shows the method of producing PAUSE n to give a
timed delay or, as in the BASIC, continue if a key is pressed. The
program uses the fact that the keyscans occur every 0.02 seconds
and that HALT waits for a keyscan.

org 23760 RI7LE 20 05 jr nz, L2
REDUCE COUNTER
ET 1© SECOND DELAY IT776 OF dec b
27771 78 S
650 01 F4 o1 ld bc.,5600 _“l £ l1d a,b
772 B1 oFr
s iy g Y 4 .)
FAUSE LOOF o F4 ir nz,l
2I7HE 76 halt et s }
23779 FD CR o1 AE res 5, (iy+1)
CHECE KEY FPRE
23764 FI 61 6E bit 5, (iy+1) 23779 C9 ret
Program 5.4

Program 5.5 is available on tape ‘KEYDEMO’ and makes use of
the LAST KEY method of reading the keyboard to produce a simple
typewriter program that allows erasure and modification of type.

The current print position is indicated by a flashing cursor. Note
that CAPS SHIFT and ‘2° moves the print position to the next

I 08>0 B2 T LOs

They PrOogeam

e thod oOf readaing

A tt/code usai1ng
iw1able and

FLAGS to see 1f at

. =<am

A COMAT

The curs0r can be back
Us1Ng cCuUrsor key S to
orfr €erase typing.

'™

FOUTER maill give newline, .
the BRERAL rey gaives a SPACE,
¢

TOP to eturn to BASIC.

The li/code€ 1 st 43 bytes

| Sl e $ (32 B AR By] K

39

PRINT COMMA TAB; CAPS SHIFT and ‘5’ gives a backspace (but
note the ROM error that you cannot backspace from the beginning
of line 1 to the end of line 0) and ENTER gives a new line. In
machine code the BREAK key is inoperable and so I have used
‘STOP’ to return to BASIC.

As with BASIC INKEYS$, neither the double-shifted keys nor the
graphics mode keys are read. Should you wish to check for, or print,
double-shifted keys then you will need to set up a DATA table of
unshifted characters and their double-shifted equivalents. Then if
LD A, (LAST KEY) returns value 14 in A, indicating both shift keys
pressed, a routine to read the next key press and convert its
unshifted character to its double-shifted one, by means of the DATA
table, will be required.

16 REM 7 STEF 7
20:DATA 24,79,5,2,"STOF THE TAF

Bl
Zo DATA 7,170,2, 3, "TYFEWRITER"
4 DATA
S5 DATA 2
Y" .
&0 DATA 29,170,1,2, "INSTRUCTION
g

65 RESTORE

7¢ BORDER 4: FAFER 6: CLS

8@ FOR A=1 TO 4

85 FAUSE 20

Q0 INE A: FAFER 8: GO SUR 8ooo
166 NEXT A

116 FAUSE @: FAFER 7: CLS

1260 INE 2: FPAFER 8: GO SUB Booo
136 INE &: PRINT AT Z,031"This p
rogram demonstrates themethod o
¥ reading the keyboardin M/cod
e using the LAST EEYvariable
and checking EIT 5 ofFLLAGS to se
e if it is a NEW key."

146 FRINT *"The cursor can be ba
ck spaced byusing cursor key O
to corrector erase typing."

150 FRINT *"ENTER will give newl
ine, and asthe BREAE key gives a
SFACE, uwuse”STOF" to return to EA

160 PRINT " "The M/code is just 4
X bytes long"
206 RESTORE So: INE 2: GO SUR 8@

FAUSE ®: BRIGHT 1: CLS
INE. @: RANDOMIZE USR 23766
STOF

200 READ x,y,h.w.,a%
8019 RANDOMIZE USR 32
8026 RETURN
7996 CLEAR 3I23%4: LLOAD ""CODE : G
0 T0 20
9999 SAVE "KEYDEMO" LINE 2924: S5A
VE "LARGE"CODE 732335, 265

40

%]

[

org 23769

Open channel 2

23760 IE
23762 CD

SET OVER

(51
23765 FD

o2

a1 16

1

36 57 OI

1d a,2
call 5633

1d (iy+87),3

FLASH CURSOR IN WAIT LOOF

3E
D7
3E
D7
5 SE
D7

JE
D7

WAIT FOR

23781 FD
23785 28
23787 FD

SET OVER

23791 FD

GET LAST

23795 A

8F

KEY FRESS
CB @1 &E
EA

CB @1 AE
5}

36 57 06
KEY

@8 S5C

CHECK FOR °"STOF?

23798 FE
23800 C8

E2

FRINT CHR$

228601 D7
23862 18

D9

Program 5.5

1d a,14%=
rst 16
1d a,8
rst 16
1d a,14%
rst 16

l1d a,8
rst 16

bit 5, (iy+1)
3 2.L1
res 9, (iy+1)

1d (iy+87),®

ld a, (23560)

rst 16
gl

41

6 MOVEMENT

Now that we are able to print our display and read the keyboard we
can look at methods of animation. This of course is an essential part
of any ‘real time’ games program. In this Chapter we will cover
methods of giving the impression of movement by:

1. "Moving the foreground — ships, aliens, people, etc.
2. Moving the background — stars, planets, skyscrapers, etc.
3. Moving both 1 and 2.

The type of movement used by most software writers is ‘character
square’; this allows faster games and use of all colours. The screen is
divided into 24 rows of 32 columns, and, when a character is moved,
it travels from its present position to the adjacent row/column,; this
movement is fairly coarse but not jerky. If pixel movement is used
then, especially with foreground movement, the characters require
replotting. If you have used the BASIC PLOT command you will
realize that this would normally restrict us to the use of two colours
(PAPER and INK).

Foreground movement one character square

The first step is to define (or initialize) the character start position
then, using either of the methods discussed in Chapter 5, to read the
keyboard, and update the character position accordingly. The
updating of the character position is usually carried out on a
‘duplicate set’ of start position data. When the updating is complete
we will have two sets of data: the first holding the actual screen
position and the second the new position. Any checks, for example,
to see whether the new position is still on the screen, are carried out
and the new data amended. To give the impression of flicker-free
movement we remove the existing character and reprint it
immediately in its new position. The method I generally use is to set
OVER 1 and REPRINT the character in the old position, thus
removing it, and, still using OVER 1 reprint in the new position.
This will allow the character to be moved over background without
erasing it.

42

org 2I766
DISSAELE EEYBOARD

2E760 FZ di
23761 18 18 jr START

UDG DATA

DATAL

CHR$ 144

defb @ @ 15 24 4% 226 225 224
CHR$ 145

defb 24 &6 255 255 153 265 271
defb 6o

CHR$ 146

defb @ © 246 24 14a 71 1395 7
START

SET UF UDG" s

23787 ED 5B 7B S5C 1d de, (234675)

21 DI 5C 1d hl,DATAIL
01 18 oo ld bc,24
ED Eo ldir

18 @A i BEGIN

Frint CHR$ DATA
AT x.y INK 8 PAFER 8
CHR$ 144 145 146

DATAZ

defb 22 @ @ 16 8 17 8
defb 144 145 146
EEGIN

BORDER S
23811 FD Z6 OE 28 1d (iy+14),4a

FAFER 1 INK 7
2EB1S FD T6 93 OF 1d (iy+83),15
CLS

27819 ZE o2 1d a,2
23821 CD o1 16 call S6%%
27824 CD 6E @D call 3435
FRINT STRING

a2 ld a,2

a1 1é call S&633

ENSE 1d de,DATAZ

Q8 0o ld bc, 16

IC 20 call 8252

DATAZ TO STORE

00 SE 1d de, 23296
F9 5C 1d hl,DATAZ
an 0o 1d b, 10
27856 ED EO 1dir

GET x,y FROM STORE

23852 2A 01 SB

1d hl, (23297)
CHECE KEY FRESSED
23855 @1 FE EF 1d bc,614738
in a, ()
bit @,a

G nz L1
inc h

bit 1,a
Ji- Nz, L2
dec h

l1d bc, L5486
in a, (c)
bit @,a

Fie Nz L3
dec 1

1d bc, 64510

78 in a, (c)

47 bit @,a

o1 j¥r nz,L4
23889 2 inc 1

L4

CHECE. STILL ON SCREEN

23890 7D 1d a,l
FE 16 cp 22
20 03 jir mz, LS
g9 2D dec 1
18 05 jr Lé
FE FF cp 2385
20 o1 jr nz,Lé
2F902 2C inc 1
L.é
23963 7C 1d a.h
FE 1E cp 20
@z ir nz,L8
dec h
a5 ir L9
s FF cp 2995
©1 jire Nz, LY
inc h

MOVE

SB ©1 SE 1d de, (23I297)

“or a
push hl
S52 sbc hl,de
pap hl
MOVE THEN SKIF
" OVER 1
28 2C jr z.L12

STORE NEW x,y FARAMETERS

43

23927 22 01 SE 1d (23297),.hl LOOF
SET OVER 1 57 21 BB 13 1d hl, 5000
23970 FD 36 57 03 1d (iy+87),3 2k dec hl
7C 1d a,h
ERASE OLD FOSITION 3 BS or 1
20 FE ir nz,L11
11 F9 5C 1d de,DATAZ
a1 oa 00 1d bc,1o k. "SFACE® FRESSED
3 CD IC 260 call 8252
REFRINT IN NEW FOSITION L @1 FE 7F ld bec, 52766
ED 78 in a, (c)
2 11 0o SE ld de,23296 CE 47 bit @,a
23946 91 @A 00 1d bc,10 Cz 21 SD ip nz, L7
23949 CD 3IC 20 call B2%52

UFDATE DATAZ FOR NEXT TIME RESET OVER &

23952 11 F9? 5C 1d de,DATAZ 23981 FD Z6 57 @@ 1d (iy+87),4
MAKE KEY BOARD ACTIVE
21 0o SB ld hl,23296
) a1 oA oo ld bec, 16 23985 FE ei
23961 ED EBO ldir 23986 C9 ret

Program 6.1A

Program 6.1A demonstrates the principle as outlined above. A
spaceship-like character is moved around the screen using keys 9/0
for left/right and 1/Q for up/down. ‘Space’ will return to BASIC. The
spaceship is able to move in two directions at once and can fly
around the screen without disturbing any background that you may
care to set up. The character is printed INK 8; PAPER 8; and so will
take on the colours of the squares as defined by the attribute of that
square. The speed of movement is governed by the delay loop, and a
check is made to see whether the ship is stationary. If it is, then the
reprint routine is missed out as this would cause the ship to flash by
being continually erased and reprinted at the same place. You can
modify the program to enable the ship to fly off the screen and
reappear on the other side by resetting ‘y’ if the ship exceeds the
screen parameters.

Multiple character movement is basically the same as above with
each character having its own set of PRINT AT DATA. The machine
code routine is very fast as can be demonstrated by using LD HL, 1
for the delay loop, when the TV will not have the chance to print all
the positions as the character moves. You will find that most
programs need some sort of delay loop to hold the picture for a
moment before moving on.

Background movement one character square
Whereas foreground movement requires the character position to

44

be held in memory and movements tracked, background movement
usually requires the shifting of the entire screen display (or blocks
of it) in a known direction without keeping track of exactly where
everything is.

This movement is normally in one of four directions — up, down,
left, and right — and usually involves both the characters and their
attributes. If a screen background is shifted by one character
position we have a further choice concerning the characters shifted
off the screen. We can either lose them and print spaces in the
row/column created on the other side of the screen, or we can store
them with their attributes and reprint them in their corresponding
place on the other side of the screen thus giving a wrap-around
effect which is most useful in games programs.

The following Programs 6.1B to 6.16 demonstrate ROLL and
SCROLL in all four directions; firstly the attributes and then the
screen characters. These programs are easily modified to ROLL or
SCROLL parts of the screen leaving the rest stationary. Note the
peculiar layout of the screen display which is split up into three
blocks of eight rows. Each row is further divided into eight lines of
32 bytes per line. The memory map starts at row 1 line 1 and ‘maps’
the 32 bytes of that line, then moves to row 2 line 1, row 3 line 1 and
so on up to row 8 line 1 thus mapping 256 bytes. We then jump back
to row 1 line 2, row 2 line 2, row 3 line 2, etc., and end up with row 8
line 8, thus mapping 2K bytes.

We then move to the middle eight rows which are dealt with in the
same way, and finally to the last eight rows, again mapped in the
same way. This does make the character rolling and scrolling a
little complicated and requires moving 6K bytes.

org 23760
23766 11 00 58
23767 21 20 S8

1d a, (234693)

1d (de),a

23766 O1 EO @2 inc de

23769 ED BO djnz L2

23771 06 20 ret

Program 6.1B

org 23760 23773 3A 8D SC 1d a, (23693)

23760 11 FF SA L7

3763 21 DF SA 23776 12 1d (de),a

a1 E@ a2 23777 13 inc de
ED ES 23778 10 FC djnz L7
a6 20 237860 C9 ret

Program 6.2

45

org 23760

06 18
21 00 58
ES
D1
Cs
23
Program 6.3

a0 58

%
PRkl

23776 1o FB

Program 6.5

SA
ES
D1
s 20

7E
FS
: 2R
23776 10 FE

Program 6.6

237660
ahH 18

S 21 0o 58

ES
D1
CS

68 7E

Program 6.7
46

push hl
pop de
push bc
inc hl

1d b,24
ld hl,2329S

push hl
pop de
push bc
dec hl

ld hl,22528
push hl

pop de

ld b,32

1d a, (hl)
push af
inc hl
dinz L1é&

1dihl, 23295
push hl

pop de

ld bs32

1d a, (hl)
push af
dec hl
djinz L24

ld b,24
1d hl,22528

push hl
pop de
push bc
1d a, (hl)

al

o1
ED
(51

16
ce

@1
ED
@b

Fi1

>
pras)

77
10
ce

i
okl

a1

'3 ED

12
(0 §
16
(7

1F
EO
8D

Fo

1F
E8
8D

Fo

E®
BO

26

FE

1F
B

1d bc,31
ldir

1d a, (23693)
1d (de),a
pop bc

dinz L12
ret

ld bec, 31
lddr

1d a, (23&493)
ld (de),a

pop bc
djnz L14
ret

1d bc,736
ldir
1d b,32

pop af
dec hl

1d (hl),a
djnz L17
ret

1d bc,736
lddr
1d b,32

pop af
inc hl

1d (hl),a
djnz L25
ret

inc hl

1d bc, 31
ldir

ld (de),a
pop bc
djnz L32
ret

a0 40
JE
Program 6.9

org 237660

23766 946 Co

23762 21 FF 57

L1

23765 ES

23766 D1

23767 CS

23768 7E

Program 6.10

org 23768

23760 21 @0 40

23763 AF

23764 06 Co

L13

23766 CS

23767 ES

23768 D1

Program 6.11

org 23760

L” "

% 21 90 40
11 20 06
as Co
36 Q0
19
19 FR

Program 6.11A

=7
-/

./.‘)
Program 6.12

1d b,24
1d hl,23295

push hl
pop de
push bc
1d a, (hl)

1d b,192
ld hl, 14784

push hl
pop de
push bc
1d a, (hl)

1d b, 192
1d hl.hhq27

push hl
pop de
push bc
l1d a, (hl)

1d hl, 16384
nor a
1d b,192

push bc
push hl
pop de

1d hl.lé 84
1d
ld

1d (hl),®
add hl,de
dijnz i1

1d hl,22527
HOFr a
1d b,192

push bc
push ki
pop de

23769
23776
PETTS
23775
23776
23077
23779

1F
B

1F
E8

1F
EBO

n
i

a1
(%1%
FF
g6

(515]

1E
E8

a0

(515]

440
46
17

[515]

dec hl

1d bec,31
lddr

1d (de),a
pop bc
djnz L33
ret

inc hl
ldbc, 31
ldir

l1d (de).a
pop bc
dinz L1
ret

dec hl

1d bcs31
lddr

1d (de),a
pop bc
djnz L1
ret

inc hl

1d' bc 31
ldir

1d (de),a
pop bc
dinz L13
ret

1d hl,1638%
ld de, 16384
1d bc,6143
ldir

ey de.hl

1d (hl1),®

ret

dec hl

1d bc, 31
lddr

l1d (de),a
pop bc
djnz L14
ret

47

org 23769

11 96 46
21 20 4
al Ea o7
ED Bo

Qs o8

21 0o 48
11 E® 40

23796 14

792 16 F1

00 48
20 48
E® a7
RG

(51

a6 S5
E® 48

23813 CS

Program 6.13

org 23766
237606 21 a9 40

20

9 FB

F1
a0 40
20 40
Eo a7
B
a8

a0 48
EG 40

27800 a1
27863F ED

48

m e
& S
g
5

1d de, 146784
1d hl, 16416
id bc, 2016
ldir

1d b,8

1d hl, 18432
1d de, 16668

push bc
push hl
push de
1d bec,32
ldir
pop de
pop hl
pop bc
inc d
inc h
djnz L3

l1d de, 18432
1d hl, 18444
1d bc,2016
ldir

1d b,8

1d hl,26480
l1d de, 18656

push bc

1d hl, 16384
1d b,32

1d a, (hl)
push a¥f

inc hl

djnz L1%9
Xor a

1d 1,a

inc h

1d a,h

cp 72

jr o nz, .18
ld de, 146284
1d hl,16416
1d bc,2016
ldir

ld b,8

1d hl,18432
1d de, 16668

push bc

push hl

push de

ld bc,32
ldir

23854
23855
27856

27858

27805
23806
23807
278608
27809
27816
23812

218195

c1
24
16
co

20
B

F1
(515
20
Eo
R
©8
a6
E®

E;

@ao 5

20

E®

(515

0w

48

@7

5S¢

[
&

push hl
push de

ld be, 32
ldir

pop de

pop hl

pop bc

inc d

inc h

djnz L4

l1d de, 20480
1d hl,20512

ld be,2016
ldir

l1d b,8

1d hl,26704

push bc
push hl
1d) b, 32

1d (hl),@
inc hl
djnz Lé&
pop hl
pap bc
inc h
djnz LS
ret

pop de

pop hl

pop bc

inc d

inc h

djnz LZ26

ld de, 18432
1d hl, 18444
ld bec,2016
ldir

ld b,8

ld hl, 26480
ld de, 184656

push bc
push hl
push de

1d bc,32
ldir

pop de

pop hl

pop bc

inc d

inc h

dinz L21

ld de, 20480
l1d hl,20512
ld bc, 2016

2086E 77
Program 6.14

20 00

B

129
23813 €5

Program 6.15

arg 23760
23760 21 FF 57
L26&

23763 06 20
L27

23765 7E

23766 FS

23767 2E

23768 16 FE
23776 ZE FF

ldir
1d hl,22527

lI'd jby 32
pop af
1d (hl),a

1d hl, 18656
1d de, 26486

push bc
push hl
push de
ld bc,32
ldir
pop de
pop hl
pop bc
inc d
inc h
djnz L8

ld de,26479
1d hl,20447
1d bc,2916
lddr

1d b,8

1d hl, 16668
ld de, 18432

push bc

1d hl,22527
1d b,32

ld a, (hl)
push af
dec hl
djnz L27
ld a,255
ld 1,a
dec h

1d a,h
cp. 79

2R
1o FE

&F

e
P

=
/

? FE 4F
20 Fo
CY

260

EQ

w1l Eo
ED E8
21 oo

Db 26

(515]

23792 21 EO
23795 11 oo

23798 CH
23799 ES
23806 DS
23801 o1 20
23804 ED BO

(515]

[E1%]

dec hl
diyn=li2E
ld a, 253
ld 1,a
dec h

1d a,h

cp 79

Jr nz,L22

ret

push hl
push de

ld bej, 32
ldir

pop de

pop hl

pop bc

inc d

inc

dinz L9

1d de, 184731
1d hl, 18399

1d bc,2016
lddr
1d hl, 146384

1d b,32

1d (hl),®
inc hl
dinz L11
®or a

1d 1,a
inc h

1d a,h

cp 72

ir nz,L1é
ret

ld hl, 18656
1d de,26486

push bc
push hl
push de

1dl beiy 32
ldir

pop de

pop hl

pop bc

inc d

inc h

djnz L28

ld de,20479
1d hl,20447
ld bc,2016
lddr

1d b,8

1d hl, 16668

49

Pro

11 oo 48 1d de, 1B432 B8
OO0
29
push bc
push hl
push de
20 oo 1d bec, 32
j<1s] ldir
pop de
pop hl FE
pop bc
inc d
inc h
Fi1 dinz L29
FF 47 ld de, 18471 48
21 DF 47 ld hl, 18399 F1
a1 Eo 67 ld bc,26¢16

ram 6.16

L E 8 -~ 0 Bt e 1

[BB RS NS A 111
me thod
ind

Tha
bhas el
foceground

ot movang

>0 s
fuNcti1o0NnNs .

be ton
the

table
AN

The
used

BACHGROUNID

rROLL I ROLL
JpP 1 2
DOt} 2 "
EEE 3 !
RIGHT 3 2]

S P ACE Lh L et

REM STEF £" CLEAR &5/ "
DAT 4,79,.5,2,"STOF THE TAF
A“TA oy 7vbra 4

« "MOVEMENT ™
DATA ©,139,2,4," ol
VFRESS ANY KE

DATA = 176,

2 24 "INSTRUCTION

BORDER 4: FAFER &: INK @ Cl
RES E S0

FOR a=1 TO 4

INE a: GO SUER

the

L ddr

4 1d hl, 16384
I'd b 32
pop af
1d (hl),a
inc hl
dinz L31
< G a
1d 1,a
inc h
1d a,h
cp 72
ir Nz, L3
ret

1 ()11

denonstrates
bo th
baiIcrground.

>PRCESH IP

3
(=)

636 FAUSE S9: NEXT a

540 FAUSE @: CLS

642 INE 2: GO SUR 8666

645 FRINT INE @3AT 3,0:"This p
-ogram demonstrates thebasic me
thods of moving both theforegroun
d and background."

4646 FRINT " "The table below show
s the keysused and their functi

647 FRINT
650 FRINT ¢
4655 FRINT *
SFACESHIF"
b&O FRINT "UF
s
67¢ FRINT “"DOWN @ ! W
gn
686 RRINT "LEFT 3 H E
gn
690 PRINT "RIGHT 4 H R
@
695 FRINT ""SFACE will return to
BASIC"
706 RESTORE S2G: INE 2: GO SUER 8
[ETaTe)
7605 IF INKEY$<:>"" THEN GO TOQ 7¢
S
710 IF INKEY#$="" THEN GO TO 716
715 FOEE T0046,0:
20 RANDOMIZE USR
725 CLS 1 RESTORE
INE ©: GO SUR 8000
730 DATA ©,80,3,1,"ENTER *GOTO 7
157 for another go."
740 STOF
READ x,y,h,w,a%$
LET c=USR 32!
80260 RETURN
7998 CLEAR Zoood: LOAD "udg"CODE
USR "a": LOAD ""CODE : GO TO Soo
9999 SAVE "MOVEDEMO" LINE 9998: S
AVE "udg"CODE USR "a",168: SAVE "
M/code"CODE Z6661,2767

Program 6.17

BACKGROUND"
ROLL | SCROLL

1 ! (8]

J00a1 F3 di
] CD D& SC call 23766
JIO0oS 18 18 jr START
DATA1

dafb @ @ 15 24 49 226 225 224
defb 24 66 255 2855 157 255

defb &0 @ © 240 24 140 71 135

SB 7B SC 1d de, (23467%)

37 75 1d hl,DATAL
: 18 a0 1d be,24
30041 ED RO ldir

TOG4T 18 0A ir BEGIN

DATAZ
defb 22 & @ 16 8 17 8 144 145
defb 146

11
@1

7,
e}

SN ar)
SUum3

S

&

l1d de,DATAZ
1d bc, 16

call 8252
1d de, %6
1d hl,DATAZ
1d bc, 16
ldir

1d hl, (23297)
1d bc,61478
in a,(c)

cp 285

Hie: ZRIUFL2
bit @,a

51

ol

Ie1e1 ZC

LP3
0102 CB SF
164 26 o1

Ioles 2

LF4

I0167 7D
Io1a8 FE

20 a3

4
74

18 a5

FE FF
9117 20 01
360119 2C

Ie12e 7C
30121 FE 1E
I@123 20 o3
30125 25
IO126 18 a5

LF7
TO128 FE FF
30170 20 o1

IO1EI2 24

9%

41 nz,; LRl
inc h

bit 1,a
Jjr- nz, LRF2
dec h

bit 2,a
jr nz, kLF3

L e 1

bit I,a
jr nz.LF4
dec 1

lcd a,l

cp 22

3 RZHLFS
dec 1

ir LFé&

cp 2355

jr nz,LPs
inc 1

ld a,h

cp Fo

g imzi L P
dec h

ir LF8

e

CRN2RS
jir nz,LF8
inc h

1d de, (23297)

Hor a
push hl
sbc hl,de
pop hl

Jir ZNER12

ld (2F297) ,hl

ld (iy+87),3
1d de,DATAZ
ld -bc, 10
call 8252

ld de,272%96
1d bc, 1l
call 8252
1d de,DATAZ

ld hl,Z232946
ld bc, 10
ldir

1d bc,&3486
in a, (o)
and 15

@1 FE

RS NG
S

Fo R

oy

76

77

jr =,8CR
cp 3

ir z,S8CR
cp 12

Jt Z55CR
cp 15

jr z.5CR
push af

ld (iy+87),3
ld de,DATAZ
1d boc,1é
call 822
pop af
bit @,a

push af

call z,UROLL
pop af

bit 1,a

push af

call z,DROLL
pop af

bit 2,a

push
call =,
pop af
bit Z,a

call =,RROLL
ld de,DATAZ
ld bc,1o
call 8252

ld bc,&4516
in a, (c)
and 15

jr =,.DELAY

cp 3

ir = .DELAY
cpe -2

jr = ,DELAY
cpl 1S

jr z,DELAY
push af

ld (iy+87),3
ld de,DATAZ
ld bc,1@
call 8232
pop af

bit @,a
push a+f
call =,USCR
pop af

bit 1,a
push af
call z,DSCR
pop af

bit 2,a

push af
call =,LSCR

F1l
CE
cc
11
a1
CD

~ e
i)

ES

SF

D 77
5D 75
QA 0o
iC 2o
1o 27

(515
20
Eo
BG
20

(=10)

FC
(1%
26
E®
B
(5=
[e1%)
E®

26
R&

F1
[51%]
20
Eo
R
@8
(515}
E

58
58

az

[21%]

@6

pop af

bit Z,a
call z,R5CR
ld de,DATAZ
l1d bc,1é
call B2352

ld hl, 1900

dec hl

ld a,h

or 1

0 e L L

l1d bc,32766
in a, (c)

bit @,a

ip nz,MOVE
ld (iy+87),@
ei

ret

ld de,22528
ld hl,228560
1d bc,736
ldir

id B 32

1d a, (23693)

ld (de),a
inc de

djnz L2

l1d de, 16384
ld hl,146416
ld bc,26016
ldir

ld b,8

ld hl1,18432
l1d de, 16608

push bc

push hl
push de

ld bc,32
ldir

pop de

pop hl

pop bc

inc d

inc h

djnz L3

1d de, 18432
ld hl,184644
ld bc,2016
ldir

ld b,8

1d hl,2648¢
1d de, 18656

push bc
push hl

30421

T0454

T04460
0461
I0462
T0464
DSCR

30485
30488

I0494

IR494
1928
Te5al

DS

a6

FE

FF
DF
Eo
B8
20
8D

a8
Eo

=1%]

26
EB&

(215

18]
50
a7

S5A
SA
a2

57
57

@7

48
56

(S1%]

push de

ldbec,32
ldir

pop de

pop hl

pop bc

inc d

inc h

djnz L4

ld de, 20480
ld hl,26512
ld bc,2016
ldir
ld b,8
ld hl,26704
push bc
push hl

ld b,32

1d (hl1),o
inc hl

dinz Lé
pop hl
pop bc
inc h
djinz
ret

LS

ld de, 23295
1d h1,23263
ld bc,736
lddvr

ld by32

ld a, (273693

ld (de),a
inc de

djnz L7

l1d de, 22527
ld hl,22495
1d bc,2016
lddr

1d b,8
1d hl, 18656
1d de, 260486

push bc
push hl
push de
ld bc,32
ldir

pop de
pop hl
pop bc
inc d
inc h

djnz L8

L1l

@é

4¢

1ld bg.uﬁlé
lddr
l1d b,8
lc hl,

1646608

l1d de, 18432

push bo
push hl
push de

ld bec,32
ldiyr

pop de

pop hl

pop bc

inc d

inc h

dinz L%

ld de, 18471
lad hl, 18399
ld bhc,2a1é
lddy

1d hl,16384

ld b,32

ld (k1) ,o
inc hl
dinz L11
xor a

1d 1,a
inc h

ld a,h

cp 72

jr mz,Lio
ret

1d b,
1d hl.ZES”B

push hl
pop de

push bc
inc hl

ld bc,>
ldir

ld (de),a
pop bo
dinz L12
1d hl,; 1638
Hor &

id b,192

push bc
push hl
pop de

o3

F D Eo
12
G
1o FX
ce

9o 18
2ANERE

Fo
F' F.

Ca

30657 D1
2B
a1 1F

A.\‘Jéé‘.’ 8

=1
1o DD
ce

UROLL
IOHLT ”1 (al%)

20

FR
Eo
s15)
26

I06BY 21 oo
.18
IOLPD 06 2o
Li1F9

oA

o8

4

inc hil

1d bc, 31
ldir

ld (de),a
pop bc
dimnz LI1Z
raet

1d b,24
ld hl,

push hl

pop de

push bc

dec hl

L b, 51
lddr

ld a, (234693
ld (de),a
pop bc
dinz Li4
ld hl 228
Hor a

ld b,192

push bc
push hl
pop de
dec hl

ld bc,Z1
lddr

ld (de),a

pop bc
dinz L14
ret

ld hl,22528
push h1
pop de
ld b,32

ld a, (hl)
push af
inc hl
djnz L16&
ld bc,736
ldir

ld b, 32

pop af
dec hl
ld (hl),a
djnz L17

1d hl,146784

ld b,32

1d a, (hl1)
push af

inc hl

dinz L19
“Oor A

l1d 1,a

inc h

ld a,h

cp 72

jr nz,.L18
1d de, 14384
1d hl,14416
1d bc,2a16
ldir

l1d b,8

1d hl,184Z2
1d de, 16608

push bc
push hl
push de

1d be, 2
ldir

pop de

pop hl

pop ba

inc d

inc h

djnz L2@

ld de, 18472
1d hl, 18444
ld bc,2016é
ldir

ld b,8

ld hl, 260486
1d de, 18456

push bc

push hl
push de
ld be,32
ldir

pop de
pop hl
pop bc
inc d
inc h

ld hl,22827

pop af
ld (hl),a
dec hl

10
2E
&F
25
A
RE
26

ce

1¢

FE
4F
Fe
FF
26
FE
E6

E8

20

20

1=

5]

00

dinz L23
ld a,285
ld 1,a
dec h

ld a.h

cp 79

ir nz,L22
ret

Td il 23295
push hl
pop de
Id by32

1d a, (hl)
push af
dec hl
djnz L24
ld bec, 736
1ddr

1d b,32

pop af

inc hkl

lad "(h1) &
dinz L2S
1d hl,2282

1d b, 32

1d a, (hl)
push af

dec hl

djnz L27

lc a,28%5

1d 1,a

dec h

ld a,h

cp 79

jr nz,L26
1d de, 22527
1d hl,22495

1d bc,z2016
lddr

1d b,8

1d hl, 18656
1d de, 20480

push b
push hl
push de
Ydp B'C.. 52
ldir

pop de
pop hl
pop bc
inc d
inc h
djnz L28

55

- 11 FF 4F ld de,zZ0479 341 7C 1d a,h

21 DF 4F 1d hl,20447 = 48 cp 72
o1 EO o7 1d bc,2016 F1 g7 n= L3
2 ED R8 lddr ret
D8 1d b,216
[=1=] 1d b.8 00 40 ld hl, 16784
Ea 40 1d hl, 16608
6o 48 ld de, 18432 push hl
pop de
push bc push bc
push hl 1d a, (hl)
push de
20 0o 1d bc,32
EBo ldir 23 inc hl
pop de 61 1F 06 1d bc,31
pop hl ED ko ldir
pop bc 1z ld (de),a
inc d P e { pop bc
inc h 5 10 F2 djnz L3I2
F1 djnz L2Z2%9 1966 C9 ret
FF 47 ld de, 184731 RROLL
DF 47 ld hl, 183972 IaR67 ab5 DB ld b,216
Ea a7 ld bc,2016 21 FF SA 1d]l s 25225
ES lddr '
D6 40 1d hl,16784 2 ES push hl
Z D1 pop de
CS push bc
7E 1d a, (hl)
91 06 26 1dib,32 2R dec hl
L3l @1 1F 6o lLd¥be, S1
TI9ET F1 pop af 3 ED B8 lddr
20934 77 ld (hl),a 12 ld (de),a
IO93S 23 inc hl S pop bc
30976 10 FE diynziE3% I0984 1o F2 dinz L33
I0978 AF HOr A
IO939 bF 1d 1,a
IO940 24 inc h 109846 C9 et

Program 6.18

Note that in these routines extensive use is made of the block
transfer instructions LDIR and LDDR and that after such
instructions the DE and HL registers hold the finish address +1
(LDIR) or —1 (LDDR). Use is made of this fact to save reloading HL
or DE with specific a address for further program routines. The
ATTR. UP SCROLL (Program 6.1B) for example uses the fact that
after LDIR the DE register holds the address of the ‘START of LINE
24’ attribute and so it is unnecessary to reload DE with this address.
The existing line 24 attributes are replaced with the permanent
screen attributes held in the systems variable ATTR P (23693).

To demonstrate each type of movement I have written Program
6.17 which is available on tape MOVEDEMO'. Since the program is
almost 1000 bytes long it is not practical to hold it all in a REM
statement (this would be more than a screenful) so I have written it
for use above RAMTOP with start at address 30001 (Program 6.18).
The machine code in the REM statement is taken from the program

56

on random numbers (Program 4.1) and is used to set up the
background. The program is self-explanatory and calls the various
routines depending on the keys pressed. The attributes are moved
at the same time as the display characters. You can move the
background and the ship diagonally and if two opposing keys are
pressed then the routine is skipped. A return to BASIC is made by
pressing ‘SPACE’. Note that the vertical movement is rather jerky
and not really suitable in this form owing to the transition from one
screen zone to another. The programs, in fact, momentarily put line
1 into line 8 before scrolling line 9 into line 8.

The screen UP/DOWN - SCROLL and ROLL programs
(Programs 6.13 to 6.16) were written in a form that should have
been easy for you to follow with no subroutines to make them
position dependent. To give a smoother movement these routines
should be tackled in a different way, that is, scrolling one row at a
time, rather than the top line of each row then the second line of
each row etc. as at present. To show how this is achieved I have
rewritten the SCREEN UP SCROLL program (Program 6.19A). As
you can see it involves one subroutine and a sub -subroutine and is
rather more complicated. Perhaps you would like to rewrite the
SCREEN DOWN SCROLL routine in the same form as an exercise
to make sure that you fully understand its workings.

org 23760 20 F1 ir nz,.L4
23760 21 00 40 1d hl,146384 ce ret
2376% CD ©1 SD call SECT
237466 ER ex de,hl ab a7 1d b,7
23767 21 06 48 1d hl,18422
23770 ES push hl S push bc
23771 CD 1S5 SD call UF 2 01 20 00 l1d bc, 32
23774 E1 pop hl ES push hl
23775 CD o1 5D call SECT D1 pop de
23778 ER ex de,hl @9 add hl,bc
23779 21 06 S0 1d hl,260480 ES push hl
=5 push hl i push de
3 CD 1S SD call UF CD 1S SD call UF
El pop hl 23823 D1 pop de
CD @1 SD call SECT
23790 21 EO S50 ld hl,20704
L.4 pop hl
23793 ES push hl pop bc
2 w6 20 l1d b,32 dinz L1
ret
1d b,8
36 00 1d (hl),@ push bc
25 inc hl push hl
1o FB djinz L3 push de
pop hl (&1%] Id bey32
inc h ldir
1d a,h pop de
23804 FE S8 cp 88 pop hl

57

pop bc
inc o
inc h
djnz L2
ret

Program 6.19A

If you compare Programs 6.13 and 6.19A you will see that we have
reduced the memory required from 99 bytes to 87 bytes but even this
is not as compact as it could be. To show how we can reduce the
memory and running time still further and give an extra useful
feature we will consider the UP ROLL Program 6.14 which as it
stands takes 117 bytes. At present the program handles each
character row, line by line and has the ‘fault’ of temporarily
transferring row 1 to row 8 and row 9 to row 17. We could rewrite it
on the lines of Program 6.21 to overcome this problem but let us
consider an entirely different approach that will give a program
only 76 bytes long.

Instead of handling the screen one row at a time, we could write a
program that rolls one column at a time. The routine would then be
repeated for 32 columns. This would give a feature of being able to
select which columns you require rolling either in blocks or singly,
and what is more, would not require 256 bytes of memory to store
the top row of the screen as Program 6.14 does but rather only eight
bytes for the single top column character. Program 6.19B shows
how this reduction in memory is achieved.

org 23760 DS push de
CHAFTER & 72 El pop hl
FROGRAM 19E 3 06 08 ld b,8

SCREEN UF ROLL "n® COLUMNS » 7E 1d a, (hl)

> FS push af
24 inc h
16 FR dinz Lé

EXAMFLE

ROLL COLUMNS S TO 14 INC

TRANSFER 7 LINES

2T760 AF MO a
L4

LLD DE, 16383+START COLUMN 23777 Q6 @7 ld. b, 7
=2

1st COLUMN = 1

2I761 11 04 44 ld de, 146388 (&) push bc
@ 21 20 60 1d hl,32
LD B,No. of columnns T 19 add hl,de
ES push hl

TRANSFER 8 BYTES
a6 ©A 1d b, 1

23785 ob& 68 ld b,8

4 DS push de
€S push bc 7 7E 1d a, (h1)
12 1d (de),a
STORE TOF LINE CHR ON STACK 24 inc h

inc d 23817 1@ FA djnz L3

djnz L1 815 D1 pop de
pop de 27816 18 D7 jr L4
pop bc

23795 19 EE djnz L2 REMOVE CHR FROM STACHE

AND FLACE IN EOTTOM SCREEN ROW
SCREEN ZONE TRANSFER

2EIT7R7 21 20 a7 ld hl,1824
20 o 1d de,32
2EBOH 19 add hl,de 52 sbc hl,de
23861 7C l1d a,h a3 ld b,8
CHECE. FOR OUT OF SCREEN pop af
ie GSTART OF ATTRIBUTES 1d (hl),a
dec h
1802 FE 58 cp 88 16 FR djnz L7
28 oC jr z,END
=5 push hl MOVE TO NEXT COLUMN AND REFEAT
23807 06 68 l1d b,8
L3 pop bc
23869 7E ld a, (k1) Pop de
23810 12 ld (de),a inc der
23811 24 inc h dinz LS
23812 14 inc d ret

Program 6.19B

You will note that we start Program 6.19B with the DE register pair
holding the address of the top byte of the start column and the B
register holding the number of columns to be rolled. As listed, the
program is completely self-contained and can be positioned
anywhere in memory.

Even this is not the end of the memory saving. Would you believe
that is was possible to reduce Program 6.19B to just 58 bytes and
add an extra facility of being able to define the rows required, thus
giving a roll window routine? Well, Program 6.19C does just that.

The memory saving is achieved by checking for the end of a screen
zone using the BIT 0,H instruction. If BIT 0,H is not zero then we
have come to the end of a zone and, instead of adding 32d to DE to
move up one line within a zone, we add 1824 to move to the ‘first’ line
in the next zone. Using this method we can define how many rows
require rolling by the number of times loop L4 is repeated. The start
ROW/COLUMN is defined by the display address held in the DE
register pair (23671/3). To calculate this start address use the
following formula:

16384 + (1824 * INT (ROW/8)) = (ROW — INT (ROW/8)) * 32) +
COLUMN

In this formula the Spectrum ROW/COLUMN numbers apply, that
is 1st row = 0 1st column = 0.

59

Example: ROW 17 COLUMN 5

= 16384 + (1824 * 2) + ((17 — 6) *32) + 5

= 16384 + 3648 + 32 + 5

= 20069

arg 253766

CHAFTER &

FROGRAM 12C

UF ROLEL. WINDUW

EXAMFLE

COLUMNS 4 TO 19

ROWS S TO 18

2A760 AF Hor a

LD DE,SCREEN START ADDRESS
ie COLUMN/ROW START ADDRESS
23761 11 8T 40 1d de, 16815
LD E,No of columns

2E764 0b 07 ld b,7

DS push de
5 push bc
D& push de
1 pop hl
L a8 ld b,8
72 7E la a, (h1)
SPES push af
24 inc h
19 FE dinz L1

LD E,No of rows—1'

23777 L& D
4

Program 6.19C

1d b, i3

To roll the whole screen DE should contain 16384, the B register
(before L6) should contain 32 and the B register (before L.4) should
contain 23. This program is easily adapted to produce UP/DOWN
SCROLL and DOWN ROLL routines.

Pixel movement

This type of movement for foreground characters is not really
suitable for games programs as it does tend to be rather slow. The
movement is reduced by a factor of eight and if you are checking for,
say, a character hitting an obstacle then each bit of the character
shape must be checked using the machine code equivalent of POINT

60

~en
oxd

21 26 90

3 19

SCREEN ZONE

5 44
04

21 20

FE

cc

push bc
ld hl,32
acdd hl,de

CHANGE

bit @,h
g 2.L2
ld hl,1824
add hl,de

push hl
ld b,8

ld a, (hl)
ld (de),a
inc d

inc h
djnz L=
pop de
pop bc
dinz L4
1d b,8

dec h
pop af

1d (hl),a
djnz LS
pop bc
pop de
pop de
inc de
djinz. Lé
ret

x,y to see whether its new position is clear before replotting. So if a
character is 16 X 16 pixels in size then even if the outside pixel
positions only are checked this would mean perhaps 100 calls to the
POINT routine before moving the character. This all takes time and
that means that speed of movement is drastically reduced.
Background movement, however, is possible one pixel at a time as
long as the attributes remain fixed (these cannot be moved one
pixel).

Demonstration program ‘PIXEL DEMO’ is available on tape and
is our first arcade games program. This demonstrates the slowness
of pixel movement and also the fact that there is a great deal of
flicker due to the background movement. The balloon must be
removed from the screen during background movement and a
POINT check made before replotting it. This time delay is
noticeable but has been kept as short as possible by the choice of
balloon in which only the outline is necessary, thus reducing the
number of POINT checks and PLOT calls to a minimum. The
principles are the same as in character square movement in that the
x,y PLOT positions are stored as data, a duplicate set of data
updated and checked, and the balloon erased using OVER 1 and
replotted using the duplicate data. Note that the balloon is able to
move off the left and right sides of the screen in a wrap-around way.
In fact this is necessary to escape the arrows on the bottom line.

For those of you with colour sets, the program is in black and
white mainly because if more than two colours were used the
balloon would change colour as it moved from one attribute square
to another and perhaps become indistinct but also because it looks
equally good on a black and white set.

The program demonstrates the principles behind left and right
screen roll in that each character byte is rotated left RLA or right
RRA and, if a bit is transferred into CARRY, it is picked up by the
adjacent character byte. This will be discussed more in Chapter 9.

To demonstrate pixel down roll the following program (Program
6.20) will plot a sine wave and draw a line on the top of the screen
then down roll it until we end up with a very smooth moving black
wavy ‘road’. This could be used in a motor-racing type of program. It
also demonstrates the method of putting non-integer steps into a
loop (see Chapter 7).

16 FOR a=& TO 4%F1 STEF FI1/44 org 23766
FLOT 160+SIN a®*25,1735: DRAW
106,60 SET a=@ (on calculator)
30 REM CALL ONE FIXEL DOWN ROL

L 2760 EF rst 40
46 NEXT a detb 166 S5é&6

61

STORE value & in DATA
35 SD 1d de,DATA
a5 00 1d bcy5
E& ldir
STACE 4#FI (on calc)
23771 EF rat 40
defb 163 56
34 inc (hl)
4 inc (hl)
4 inc (hl)
SUE a—-4%FI
23777 EF rst 40
defb I Sé
CHECK 1st MANTISSA EBYTE
FOR -ve ANSWER
23786 2= inc hl
23781 7E 1d a, (hl)
23782 CB 7F bit 7,a
27784 20 04 jr nz,L2
CLEAR CALCULATOR if -ve
23786 CD F1 2R call 11249

RETURN TO BASIC

23789 C9

CLEAR CALCULATOR

(L7

23796
23793

CD F1 2B
CD ZA SD

STACKE DATA a

23796 CD 24 SD

130+SIN a*®25=

23799 EF
sine
defb 3
stack
defb S
mult
defb 4
stack

defb 52
add
dethb

FLOT w2 oY

ret

call
call

ROLL

call

rst 40

11249

STACK

23813 CD DC 22

SAVE H L7
238146 D9

23817 ES
23818 D7

LD B,& LD C,
23819 01 44 oo
L.D DE, +ve +ve
23822 11 o1 o1
CALL DRAW

23825 CD BA 24

RESTORE H’L®

STACK DATA a

CD 24 SD

166

defb 19
end calc routine
defb 5Sé&
23842 18 AF
STACK a SUER
STACK
SD
&5 5
5 06
68 5

DATA a STORE
DATH

deft: @ © @ 0 a

DOWN ROL.L

Dés PO
21 AG 57

call 8924

e
push hl
ex

1d bec, 166

1d de,257

call 2462

exx
pop hl
exx

call STACE

rst 40

jro L1

1d
1d
l1d be,5
ldir
1d (23653
ret

hl,.DATA

l1d b,
1d hl

de, (23457)

) de

l IPT9 19 FER djnz L4
=871 7E ld a, (hl) 27941 CS ret
2387 FS push af
37 3 nc hl DOWN
23874 ? FE ijnz L3 23945 s push bc
23876 21 BF 5¢ ld hl,22267 SIF4T 06 a7 1d b,7
879 11 BF 57 ld de, 22463 L35
R as ab 1d b.é 23945 CS push bc
4 CD 86 SD call DOWN 23944 ES push hl
21 EO® 4F l1d hl,20448 & ES push hl
INRGG 11 00 S50 1d de,Z20480 a1 ld bec, 32
Tl 20 06 ld bc, ED 3 ldcr
D1 pop de
El pop hl
25 dec h
B ldir C1 pop bc
F 1E 1d hl,20223 16 F djnz LS
TGO F 4F l1d de, 20479 G 1d a,h
a4 BhH @ ld b,8 Cé ag add a,8
15 D 6 8D call DOWN b7 ld h.a
21 Ea 47 id hl, 18400 19463 7D 1d a,l
1 11 0o 48 l1d de, 18432 P64 D& 2¢ sub 32
b k- 1 G 00 lld by o52 266 &F 1d 1,a
1918 ED RO 1dir I push hl
2260 21 F 4 ¢ 1d h1,18175
%G F 47 ld de, 184731 T968 ES push hl
y 06 98 1d b,8 : @1 20 00 ld bc,32
928 CD 86 SD call DOWN ED lddr
TR 0L 2o 1d b, 32 E1 pop hl
29 21 1F 40 1d hl,16415 2o/ Dl pop de
4 DEIT7H 25 dec h
2EPR6 F1 pop af 2977 C1 pop bc
3838 T 1d (hl),a 2278 10 DA djnz DOWN
); dec hl 980 C9 ret

Progrém 6.20

63

The PIXEL DOWN ROLL routine at the end of Program 6.20 has
again been written so that it should be easy for you to see the
procedure necessary. This can be rewritten on the lines of Program
6.19C to pixel down roll a window, at the same time making it
‘position independent’ and using less memory. In its present form it
takes 115 bytes (+ 32 bytes to store the bottom line) but rewritten as
Program 6.20A takes just 44 bytes (+ 1 to store the bottom column
byte).

org 23769 2E772 ab 23 1d b,35
CHAFTER &
FROGRAM 204 ES push hl
7E 1d a, (hl)
DOWN ROLL WINDOW 12 l1d (de),a
. D1 pop de
EXAMFLE 7C 1d a,h
25 dec h
COLUMNS 4 TO 16 D ESL O7 and 7
LLINES 4 TO 29 2 20 0A jr nz,L3
7D 1d a,l
REM LINE 1/COLUMN 1=TOF LH. 5 D& 20 sub 3I2
23760 11 BI 46 1d de, 18651
23787 &F ld 1,a
LD E,Columns 23788 38 04 jr c,L3
23790 7C 1d a,h
23767 06 a7 1d b,7 23791 C6 0B add a,8
L2 QI795 &7 ld h,a
23765 CS push bc L3
23794 10 EA dijnz L1
223796 F1 pop af
23766 DS push de 23797 12 1d (de),a
2I767 1A ld a, (de) 23798 D1 pop de
23768 FS push af 23799 Ci pop bc
23769 DS push de 23800 13 inc de
23770 E1 pop hl 27801 16 DA djnz L2
23771 25 dec h 238603 C9 ret

LD E,Lines-1 !

Program 6.20A

The number of columns to be rolled is held in the B register
(before L2) and the number of lines — 1 in the B register (before L1).
The DE register is loaded with the screen address of the first column
bottom byte and is calculated using:

LET A = LINE (0 is first line)

LET B = INT (A/64)

LETC =A —(b* 64

LET D = INT (C/8)

LETE=C -(D*8)

LET F = COLUMN (0 is first column)
ADDRESS = 16384 + (1824 *B) + (256 *E) + (32* (D — 1)) + F
EXAMPLE LINE 38 : COLUMN 3

64

A=38:B=0:C=38:D=3:E=6:F=3
ADDRESS = 16384 + (1824 * 0) + (256 *6) + (32 *4) + 3 = 18051

As this formula is rather lengthy you could write a machine code
program to do the calculation for you. Start with the HL register
pair holding the LINE/COLUMN number and end with this
converted to the screen address in DE so that you may go straight
into the ROLL routine (or alternatively have a table showing the
individual addresses of the lines/columns for the screen memory
map.

Why not try to write such a routine? It could be useful in many
programs, for example, to POKE characters directly onto the
screen. If you get stuck, then Program 6.20B gives one method and
takes just 29 bytes (this would be 28 bytes if LINE/COLUMN were
placed in HL using LD HL, 034Fh). I have attached the program to
Program 6.20A.

Study this program until you are confident that you know how it
works as it will give you a better understanding of the display file.

arg 23760 5 GF 1d e,a

CHAFTER & 7D ld a,l

FROGRAM Z20R 81 add a,e
SF ld e,a

DOWN ROLL WINDOW

EXAMFLE
LD B,Columns
COLUMNS 2 TO 9

LINES S6 TO 79 2E789 a6 a7 ld b,7
REM LINE @/COLUMN &=TOF LH. CS push bc
ex] push de
LD H,Line 1A ld a, (de)
FS push af
23760 26 4F ld h,79 DS push de
Ell pop hl
L.D L., Column 25 dec h
2I762 2E 93 B [y s« LD B,Lines-1 !
2798 @6 17 ld b,23
1d de, 16384 L1
1d a.h ? ES push hl
and 7 7E ld a, (h1)
ar d 2 12 ld (de),a
1d dya * D1 pop de
ld a,h 74 B ld a.h
and 192
rra
rra dec h
rra and 7
add a,d SE RE S
1d d,a 1d a,l
1d a,h sub 32
and Sé iId 1,a
rla ir cl L3
rla ld a,h

65

add a,8
1d h,a

djnz L1
pop af

ld (de),a
pop de
pop bc
inc de
dinz L2
5829 C? ret

Program 6.20B

These two programs for pixel movement (Programs 6.20A and
6.20B) show methods of rolling the background left/right and down.
I'will leave it to you to produce programs to UP ROLL and SCROLL.
It must be remembered that in machine code there is no correct
method. Each person will have his or her own personal way of doing
things, choosing registers, and deciding whether to push/pop, or
store value etc. and as long as the program works to the individual’s
satisfaction then all is well. Many of the programs discussed so far
may well be rewritten to save memory or to reduce running time but
in doing so they may not be so easy to follow for someone beginning
programming.

There is one more useful ROM routine that is not available from
BASIC and that is SCROLL n lines with attributes, where n must be
greater or equal to two (but not greater than 24 of course).

Program 6.21 shows the routine being used to clear lines 16 to 24
inclusive (nine lines) by calling the routine nine times. Note that
the number of lines to be scrolled are counted from line 24. This
routine could be used instead of our user-written one in the
‘MOVEDEMO’ program. The B register holds the number of lines to
be scrolled —1 and then a call to 3584 is made. The bottom line is
overprinted with spaces using colours from ATTR P.

org 23766
2IT76G 0L 09 1d b,?

 BS push bc

T 06 08 ld b,8
CD ©é oE call 3584
c1 pop bc
160 F7 d5no RIS
ce ret

Program 6.21

Finally, here is a routine to roll a screen left (or right) by half a
character at a time. This program, although short, is rather more
difficult to understand and makes use of the rotate left decimal (or
rotate right decimal) instruction. This instruction involves the
nibble-handling of the A register and the contents of the address in

66

the HL register pair. RLD transfers bits 0 to 3, (HL) into bits 7 to 4,
(HL); bits 7 to 4, (HL) into bits 0 to 3, A; and bits 0 to 3, A into bits 0 to
3, (HL). Incidentally it affects none of the ‘flags’. You can see from
Program 6.22 that this instruction is used on each screen line using
the A register to store the right-hand nibble and to place it into the
next character left-hand nibble. The first character left-hand nibble
isblanked out because the A register holds 0 at the start of each line.
At the end of each line the A register holds the left-hand nibble
which will be shifted off the screen. This is used to add to the line
start byte to give a wrap-around effect. If you required a continually
changing background you could hold the replacement right-hand
nibble in data form to be added to the right-hand byte instead of
using the nibble shifted off the screen as above. I will leave the
RIGHT ROLL routine for you to write (one tip — start at the
beginning of the display file).

org 23760 Rotate left a, (hl)

CHAFTER & nibble instruction
FROGRAM 22

L2
HALF CHARACTER SQUARE 23771 ED &F rid
LEFT ROLL ROUTINE 23773 2R dec hl
23774 10 FR dinz L2

DI76G FI di
Get line start in de
Start at end of display

23761 21 Fr- 57 lds b, 22527

23774 D1 pop de
No. of screen lines

Store present scr. pos.

23764 06 C4 ld b,1964
(B 23777 ER ex de,hl
2374646 CO push bc
Add LH nibble to
Reset a=@ RH byte
23778 86 add a, (hl)
2XTTITT ld (hl),a
2E767 AF xor a
Restore scr. pos. in hl
No. of bytes/line
23780 ER ex de,hl

23768 9b6 20 ld b,32

23781 C1 pop bc
782 16 EE djnz L1
784 FE ei
23785 C? ret

Store line start

23776 ES push hil

Program 6.22

67

MUSIC AND
SOUND EFFECTS

In this chapter we will be looking at ways to improve your animated
graphics with interesting sounds and ‘music’. But firstly we must
take a look at the Spectrum way of storing numbers in floating point
form and also how to convert a floating point number to its
compressed form. If your maths are a little rusty then do not worry
too much about the theory as the Spectrum can help. Put simply,
any number whether decimal, integer, positive, or negative can be
expressed in a five-byte form using a set procedure to define each
byte. The first byte is called the exponent and the remaining four
bytes are called the mantissa.

The conversion of a ‘normal’ number to its five-byte form involves
four stages as follows:
1. Express the number in its binary form.

For example 11.375 would become 1011.011
Remember that 0.1 binary =
0.01 binary = %
etc.
2. Find the exponent.
Move the decimal point either left or right until it is to the left of
the first 1 in the binary number and count the number of moves
taken.
The EXPONENT will be 128 + the number of moves taken.
If the moves are to the left then the ‘moves’ are positive.
If the moves are to the right then the ‘moves’ are negative.
In our example the exponent = 128 + 4 = 132
and we are left with .1011011
3. Alter the bit to the right of the decimal point to indicate the sign
of the original number.
If the number was positive then the bit is reset.
If the number was negative then the bit is left set.
In our example the number was positive and becomes .0011011
4. Find the mantissa.
Discard the decimal point and divide the remaining binary
number into four bytes, adding zero as necessary to make up to
32 bits.

68

00110110 00000000 00000000 00000000

and then convert each byte back to its decimal number.

And so it can be seen that in our example

11.375 =13254000

If by now you are thoroughly confused then, as I have said, the

Spectrum can help. The Spectrum has a useful method (useful to us,
that is) of storing simple variables in that they are stored
immediately after the variables’ code in their five-byte floating
point form. So all we really need to do is to write a short program to
ENTER a number and then PEEK at the variable store to find the
five-byte form.

5 £0 TO Seao

1& REM FROGRAM .TD FRINT
FLOATING FOINT FORM OF ANY
NUMEER

20 PRINT AT 3,03 "THE FOLLOWING
SHORT FROCRAM WILLFRINT THE FLOAT
ING FOINT FORM OFANY NUMBER, DECT
MAL, INTEGER ANDNEGATIVE NUMBERS.

INTEGER NUMBERS HA
VE THE DECIMAL®.0060600000001 ADDE
D TO CONVERTTO A FLOATING FOINT
NUMEER BUTNOT AFFECT ITS VALUE.

20 FRINT *° "COMFRESSED FORM NUM
BERS ARE ALSOGIVEN FOR USE WITH
CALCULATORLITERAL Z4H (S2d).

RETURM
INPUT " NUMBER: " THE‘ a;n
1BER :

=""NUir
LET bi: TLORTING POINT =
L =" [OMPRESSED 'ﬂm‘

o

IF N<:@ THEN GO TO 1016

5 FRINT n$:TAR 9;d$; FAFER 6i@

"b$ITAE 95d$i"G "id$i"0 "id$:"o
Yid#3te “idsive"

1006 FRINT c$;TAR 9:d$:"0 “"id$;"

176" 1d%5 "0"

GO TO 166
LET N=N+.00000000001
3 FRINT n$3iTAB ?id$; FAFER &iN
FRINT b#s:
1076 LET X=FEEEK 23627+25&6%FEEK 27T
628

1940 FOR A=1 TO S

16560 FRINT TAB S+4x*ajd$sFEEK (X+A
)E

1066 NEXT A

1065 FRINT °

16976 DIM a(5)

1075 LET qg=¢

1076 FRINT c%3

1680 FOR b=S TO 1 STEF -1

1085 LET a(b)=FEEK ((PEEK 23627+2
S&6*FEEK, 23628) +b)

1986 IF b=2 THEN GO TO 116é

1996 IF g=0 AND a(b)=0 THEN NEXT
b

69

t1ee LET g=g+1
1116 NEXT b
1120 LET q=qg-2
1125 x=(a(l1)-8a)

1126 v =64 THEN GO TO 2Zaoo
1130 LET e=x+(q*b64)

1149 FRINT TAE idsies

1159 FOR b=1 TO qg+1

11460 FRINT TAER @+b*4idsial(l+b)
1176 NEXT b

118¢ FRINT

1190 GO TO 106

2000 FRINT TAR 9:d$: q*643TAE 13:5d
‘b-a(l)---BU.

FOR b=1 TO q+1

FRINT TAEB 13+b#45d$ia(l+b)i
NEXT b

FPRINT : GO TO 166

3. .DATA 24,79,5,2,"STOF THE TAF

DATA 15,167,7,.4, "NUMBERS"

200 DATA 15,130,2,4,". &
5256 DATA 24,15, 1 .2, "FRESS ANY KE
g

55606 DATA 31,1760,1,2, "INSTRUCTION
g

L0900 BORDER 4: FAPER &: INE ©: CL
s

b1 LET n=@
6050 RESTORE S000

FOR a=1 TO 4

INE a: GO SUR 8aad
FAUSE
FAUSE
INE 2
INK @:

50 SUR 16
. 2: GO SUE

RESTORE

IF INEEY$:"" THEN GO TO 7@
[%]1]
7066 IF INKEY$="" THEN GO TO 766
(=]

7@169 CLS @ GO TO 106
Rmm READ %,y,l.w,a%
331@ LET c=USR 22393
P20 RETURN
9998 CLEAR 22334: LOAD "udgs"CODE
USR "a",168: LOAD ""CODE : GO TO
S5O00
P999 SAVE "NUMBERS" LINE 9998: S5A
VE "udgs"CODE USR "a",168: SAVE "
LARGE"CODE 3I2335,26%5
IT46@ S.A.Nicholls

Program ‘Numbers’

This program is available on tape with colours held as part of
strings n$ b$ c$ and d$.

When RUN, the program will print the five-byte floating point
and compressed form of any number. The compressed form will be
discussed later. Note that O is treated as a special case in which all
bytes are 0, and also that 0.5 and ; give different results.

70

By now you are probably wondering what this has to do with
music and sounds. The answer is that the BASIC BEEP command
makes use of the calculator stack and any number stored on the
stack must be in its five-byte form.

We can now look at the method of converting the BASIC
command BEEP duration, pitch into machine code. This entails
stacking the value of duration and then pitch in their five-byte
forms on top of the calculator stack and then calling the BEEP
routine from address 03F8h (1016d).

If we take, for example, BEEP .1,11, then using the NUMBERS
program we can convert .1 and 11 to their five-byte form:

1 =125 76 204 204 204
11 =13248000

We must now find a way of stacking these ten bytes consecutively on
the calculator stack. One method would be to find the start address
to which the DATA must be transferred by PEEKing at the system
variable STACKEND and then to use an LDIR instruction as shown
in Program 7.1.

org 23766 23772 ED 53 65 SC 1d (23653) ,de
CHAFTER 7
FROGRAM 1 CALL BEEF
BEEF .1,
FIND &7ACKEND 23776 CD F8 O3 call 1016
23779 C9 ret
&0 ED SB 65 S5C 1d de, (23653) DATA
64 21 E4 5(1d hl1,DATA @.1, (5 byte form)
W767 A1 0A 0 ld bc,1@ defh 125 76 204 204 204
23770 ED RO 1 iy
11 (5 byte form)
LUFDATE STACKEND defh 132 48 0 0 &
Program 7.1

The RESET is needed to reload STACKEND with the new
address of the top of the stack. Remember that LDIR ends with HL.
and DE holding the address of the last byte transferred +1. The
BEEP routine when called from address 03F8h takes the top two
values from the stack and manipulates them to give the required
duration and pitch. The stack is thus reset to give a safe return to
BASIC.

Another method of stacking integer numbers is to use LD A,n and
CALL STACK A subroutine 2D28h (11560d) for numbers 0 to 255,
or LD BC,nn and CALL STACK BC subroutine 2D2Bh (11563d) for
numbers 0 to 65535. Program 7.1 could then be written as Program
7.2.

71

org

CHAFT

23760 23772 ED 53 65 S5C 1d (23653 ,de
TER 7 23774 ZE GR 1d a, 11

FROGRAM 2

BEEF .1,11 STACKE value a
23778 CD 28 2D call 11566
FIND STACKEND
CALL BEEF
5 ED SE 65 5C 1d de, (23653)
21 ET 5C 1d hl,DATA 23781 CD F8 0Z call 16416
767 01 @5 0o ld bc,S 23784 C9 ret
23770 ED EO ldir DATA
. a.1 (5 byte form)
UFDATE STACKEND defb 125 76 204 264 204

Program 7.2

Lastly, for those who wish to take floating point numbers one stage
further, we can convert them to their compressed form and use the
calculator literal 34h (52d) to stack data in this compressed form.

The stages for converting five-byte floating numbers are as
follows:

1.

SOt o

=3

Starting from the fifth byte, remove all zero numbers until a
non-zero number is reached or until the second byte is reached.
The quotient is then the number of remaining bytes less 1.
Subtract 50h (80d) from the exponent and, if the remainder is
greater than or equal to 40h (64d) then go to instruction 6.
Change the exponent to (exponent — 80d) + (quotient * 64d).
Go to instruction 7.

The exponent becomes two bytes. The first byte is the quotient
*64d; the second byte is the exponent — 80d.

Place the remaining bytes after the modified exponent byte(s).

To convert a compressed number back to its five-byte form then

the
]2
2.
3.

4.

following stages are taken:

Divide the first byte by 64d.

If there is a remainder then the exponent will be 80d +
remainder.

If there is no remainder then the exponent will be 80d + the
second byte.

The quotient is used to find how many extra bytes follow the
exponent. The number of extra bytes is the quotient + 1.

As an example 11 = 52 48 in compressed form.
52 divided by 64 = 0 remainder 52
quotient = 0
further bytes = 1
As there was a remainder exponent = 52 + 80 = 132

1

further byte specified = 48

Make up to 5 bytes with 0 0 0
S0 5248 =13248000

72

Again if all this is too much for you at present then the
NUMBERS program will do all the converting for you. Using
compressed form numbers BEEP .1,11 can be converted to machine
code as shown in program 7.3.

org 23769 STACE 11 (COMF. FORM)
CHAFTER 7
FROGRAM = defb 52 S2 48
END CALC
BEEF .1,11
USE CALCULATOR
defb 5&
27760 EF rst 4@
. CALL EBEEF
STACK @.1 (COMF. FORM)
23771 CD F8 03 call 1016
defb S2 237 76 204 204 204 23774 C9 ret
Program 7.3

In Program 7.3 RST 28h (40d) calls the CALCULATOR routine and
defb 38h (56d) is the END CALC literal.

The FANFARE BEEP for the ‘CROSS’ program is a combination
of all three methods, namely, holding numbers as DATA, using
stack A and using literal 34h (52d) to stack compressed form
numbers. In this program it is fortunate that the mantissa bytes of
the compressed form of decimals .1 .8 and .05 are the same, so that
the exponent byte only needed to be stored as DATA.

1 REM CHAFTER 7 VALUE

2 REM FROGRAM 4 defb @ 76 204 204 204 Sb&

REM FANFARE BEEF 23780 E1 pop hl

16 FOR a=1 TO 8 3 1d a, (h1)

20 READ b,c push hl

I6 BEEF b,c call 11566

560 NEXT a call 1016

60 DATA .1,11,.1,11,.8,16,.65, 23789 E1 pop hl
11,.05,16,.05,11,.05,16,1,20 23796 C1 pop bc
org 23760 23791 23 inc hl
2IT7HO 0L O7 1d b,7 23792 10 EZ djnz LOOF
23762 21 09 SD 1d hl,DATA 23794 IE o1 1d a,1
LOOF call 11560
23765 7E 1d a, (hl) 1d a,2e
23766 32 DE SC 1d (VALUE),a call 1156@
23769 23 inc hl call 1016
23776 CS push bc 23807 C9 ret
23771 ES push hl DATA
23772 EF rst 40 defb 237 11 237 11 240 1& 236
defb S2 defb 11 236 16 236 11 276 16
Program 7.4

73

So far I have shown you how to convert any BASIC BEEP
command into machine code. This is fine for ‘music’ but will not
produce anything like a decent sound effect. For this type of sound
we will need to enter the BEEP routine at a different point, 03B5h
(949d). After the values for duration and pitch have been removed
from the stack they are manipulated and end up with ‘pitch’ in the
HL register and ‘duration’ in the DE register. So a program could be
written to give a falling tone by incrementing the value stored in
HL and calling the BEEP routine repeatedly in a ‘FOR/NEXT loop’.
This can be achieved as shown in Program 7.5.

org 2376 CALL BEEF

CHAFTER 7

FROGRAM 5 23779 CD BS a3 call 949
23773 C1 pop bc

SOUND 1 22774 E1 pop hl
23775 2% inc hl

23760 0& FF 1d b,255 23776 16 FX djnz LOOF

23762 21 01 06 ld hl,1

LO0OF

2I765 11 o1 oo ld de, 1 23778 C9 ret

23768 ES push hl

23769 CS push bc

Program 7.5

You will notice when Program 7.5 is RUN that as the pitch
gradually changes the duration also changes. This is because the
duration is in fact a function of both values in HL and DE registers.
To even out the duration we must decrease the value held in DE as
the value in the HL register increases. So we arrive at Program 7.6.

arg 23760 push bc

CHAFTER 7 5 03 call 949

FROGRAM & pop bc
pop hl

SOUND 2 pop de
inc hl

2ET7LG Gb L4 ld b, 160 dec de

2I762 21 01 0o 1d el 51 F3 djnz LOOF

2I765 11 65 00 ld de,1a1

LOOF

23768 DS push de 23781 C9 ret

23769 ES push hl

Program 7.6

We have one last method of producing sound from the Spectrum
and that is by sending ‘signals’ directly to the speaker switching it
high or low in the same way as the ROM routine does. There seems
little point in using this method for musical notes as we would need
to know the frequency of the high/low switching for each note and
would in fact duplicate the ROM routine. However it does have a use
in games programs for producing a ‘white noise’ type of sound for
explosions etc.

74

The instruction to communicate with the speaker is OUT (254),
A. This instruction controls not only the speaker but also the
temporary border colour in the following way:

1. If bit 0,A is set then blue is on.
If bit 0,A is reset then blue is off.
2. If bit 1,A is set then red is on.
If bit 1,A is reset then red is off.
3. If bit 2,A is set then green is on.
If bit 2,A is reset then green is off.
4. If bit 4,A is set then speaker is ‘high’.
If bit 4,A is reset then speaker is ‘low’.
You can see from the above that if bit 4 were set and reset at regular
intervals then a note would be produced dependent on that interval.

To produce true white noise we would need random interval
switching but this would mean a lengthy routine to produce a
random number and check bit 4,A each time causing a ‘long’ pause
between switching. We must therefore find a quick method of
producing ‘random numbers’. This is not as hard as it sounds, for we
are only interested in the state of bit 4,A and for our purposes the
ROM bytes are random enough. With this in mind we can write a
program to look at each ROM address in turn checking the state of
bit 4 of the number held in that address and thus switch the speaker
high or low accordingly.

org 23766 [515) nop

23760 21 0o 00 1d hl,o 2 00 nop

L1 3 D3 FE out (254),a
23763 7E 1d a, (hl) [4]%] nop

2R764 00 nop 23 inc hl
23765 DE FE out (254),a 7C 1d a,h
2F767 0O nop EE: 3€ cp 66

23768 oo nop D 20 ED jr nz,L1
23769 DI FE out (2854),a 2 C9 ret
Program 7.7

There are several points to note in Program 7.7.

1. Thethree OUT (254), A instructions and NOPs give a set delay.
You may like to remove or add more and hear the effect.

2. The length of sound is governed by the CP 60 instruction. If this
were reduced to say CP 40 the length of sound would be
similarly reduced. Anything above 60 runs into an area of ROM
with not so random numbers. Try it and see what happens.

3. The border colour is also temporarily affected as bits 0 — 2 are
also changed at random. To keep the border the same colour you
would need to replace bits 0 — 2 with bits 3 — 5 of the value held
in the systems variable BORDER.

If you want to experiment with producing music by this method

then remember that the ROM interrupt routine is called 50 times

75

per second and will upset your frequency so you will need to disable
it (DI) before your routine and enable it (EI) afterwards. This in fact
is what the ROM routine does and explains why you cannot BREAK
a BASIC program during execution of a BEEP command.

I leave the rest to your imagination and ingenuity in altering the
values held in HL and DE registers to produce wonderful and weird
effects, but to give you some idea of sounds possible using the above
method the tape contains a Program SOUND which has five
different sounds accessed by pressing keys 1 to 5. The flashing
border does give an extra dimension to sounds 1 and 5 and is very
simple to program.

One last point — do keep sound effects as short as possible since
they do halt all moving graphics during their execution. The best
place for sounds is in delay loops used to slow down the moving
graphics.

A0UND

Press reys 1 Lo S for 2ounds)
EPRCE will retucn to BRSIC

1o REM 7 RETURN RUN GO SUER X F
RINT THEN G TQ 7?1 LET FRINT THEN
0 TO JILET FRINT THEN W TO DI
LET FRINT THEN TO _1 LET FRINT
THEN g TO [1 LET * STEF £"7 RE
TURN @ GO SUB X THEN Gx=7+
2 OrR !'d?

25> INE 2:FAFER 7:BORDER 4:CLS

30 LET x=16: LET y=106: LET w=2
: LET h=4: LET a$="STOF THE TAFE"

40 FPAFER 8: RANDOMIZE USR 32393

6@ FRINT g8a3;AT @,Z:"FRESS ANY }
EY TO START"

76

&6 FAUSE ©

65 CLS

70 LLET %=8: LET y=1735: LET w=5:
LET h=15: LET a%$="SOUND'"

8@ INK 2: RANDOMIZE USR 3

Q0 FRINT AT 19,23 "Fress
to % for sounds"

190 PRINT AT 21,33 "SFACE
turn to BASIC"
119 RANDOMIZE USR 23766
? CLLS

136 LET x=24: LET y=109: LET h=5H
: LET w=1: LET a%="To re RUN ente
r GOTO &5"

146 RANDOMIZE USK 22393
15¢ STOF
9998 CLEAR = *4: LLOAD ""CODE : G
070 25
?999 SAVE "SOUNDS" LINE 9998: SAV
E "LARGE"CODE Z2335,265: STOF
<336 @ S.A.Nicholls

org 23760

START
23760 @1 FE F7 ld bc,b7486
2376% ED 78 in a, (c)
2E765 FS push af
23766 CR 47 bit @,a
23768 CC @7 SD call z,BEEF1
23771 F1 pop af
23772 FS push af
2E773 CR 4F bit 1,a
23775 CE 290 5D call =z,BEEFZ2
23778 F1 pop af
23779 FS push af
23780 CR 57 bit 2,a
23782 CC 44 SD call z,BEEF3
23785 F1 pop af
23786 FS push af
23787 CR SF bit Z,a
23789 CC SF SD call =z ,BEEF4
23792 F1 pop af
push af
bit 4,a
SD call z,REEFPS
pop af
ld a,7
22 call 885
= 7F 1d be,
in a, ()
bit @,a
ret =
jr START
ld b,5é
push bc
a0 1d hl, 106
a0 ld de,1é
push hl
1d a.l
and 7

77

call 8852
call 94%
pop hl

ld de, 1o
Hor a

sbc hl,de
1d a,h

or 1

21 0o 0o la hi

ld a, (hl)
nop

EE out (254),a
nop
nop

EE out (254),a

S
oSS S m

e

nop

nop

out (284) ,a
nop

nop

out (284),a
nop

inc hl

ld a.h

cp 64

&1 8 gt L
ret

ld b,S

<
push be
1d hl,5@

ld de,1@
push hl
call 949
pop hl
1d de,5@
add hl,de
1d a,h
cp 4

ir nz,l.4
pop bc
djnz LS
ret

1d b, 1o

push bc
1d hl,16024

1d de,1
push hl
call 249
pop hl
xor a

1d de,16

C1
10
ce

Program ‘Sound’

Q@b
7B
e
a1
BS

ED

=

a1
a0

az=

sbc hl.de
ld a,h

or 1

Jh N2y
pop bc
dinz L&
ret

1d hl,1

1d de,S
push hl
call 949
pop hl
inc hl
1d a,h
CHN2
JEnz
l1d b,25@

push bc

1d a,b
and &
call 8889
ld hl,460
1d de,1
call 949
pop bc

d jinzN12,
ret

79

ATTRIBUTE, SCREEN$
AND POINT

As you may know if you have tried BASIC games programming,
there will come a time when you will need to find the character in a
particular screen position. This is useful for example if checking
that a missile hashit its target or that you have landed on the moon.
In BASIC there are three methods of doing this, namely:
ATTRIBUTE which checks the INK: PAPER: FLASH: BRIGHT
state of a character square and returns a number from 0 to 255.
SCREENS which checks the character in a particular square (but
only characters CODE 32 to 127; the rest returns an empty string).
POINT which checks the state of a screen pixel: 0 = unplotted 1 =
plotted.

All three above methods are available in machine code by calls to
the particular ROM routines.

ATTRIBUTE (line, column)

The machine code routine — call 9603 — requires the line number in
the C register and the column number in the B register. The value of
the ATTRIBUTE after the routine is called ends up as the top value
on the calculator stack. The value of the ATTRIBUTE is made up in
the following way:

Value = 128 * (FLASH number) + 64 * (BRIGHT number) + 8
*(PAPER colour) + INK colour

You can see from the above formula that the value has a range of 0
to 255, and so may easily be removed from the stack into the A
register using the ‘CALC VALUE TO A’ routine — call 11733 — and
then checked by a CP n instruction.

Program 8.1 shows the above method used to PRINT AT 0, 20;
PAPER 1; INK 7; FLASH 1; CHR$ 144 (which has been redefined as
a man). The program then checks each screen position, shown by a
> sign, until it finds ATTR value 143 and then returns to BASIC.

arg 23766 2 ED SR 7R SC 1d de, (23475)
CHAFTER 8 21 42 §D 1d hl,DATAZ
FROGRAM 1 7 91 a8 66 id bc,.8

77¢ ED E© ldir

ATTRIBUTE CHECE

{ SCREEN
SET UF UDG

80

IE 02 ld a,2 2
Ch a1 16

2 22 49 5D ld (COL),a

CD &E @D call GET COLUMN/LINE IN EC
JE o2 1d a,2
CD @1 16 call 5633 3ZF SD 1d bc, (LINE)
CALL ATTR. %
GET VALUE IN A
UDG
3 25 call 663
11 2E SD 1d de,DATAL 2D call 11733
B1 16 96 ld bc,16
CD 3C 20 call 8252 CHECE IF 1473
SET OVER 1 23845 FE 8F cp 143
23794 FD 36 57 @3 1d (iy+87),3 MOVE TO NEXT FOSN.
RESET 'START AT ©,0 23847 20 Di jr nz,L1
23798 AF xor a RESET OVER ©
23799 32 40 SD 1d (COL) ,a

FD 36 57 @@ 1d (iy+87),@
co ret

1d de,DATAZ

4
oW
Pl =

23805 01 o4

(=15] 1d bc,4 UDG DATA
DATA1
23808 CD ZIC 2@ call 8252 defb 22 @ 20 17 1 16 7 18 1
defb 144 18 © 17 7 16 &
DELAY
FRINT > DATA
23811 21 FF FF 1d hl1l,65535
152 DATAZ
23814 2B dec hl defb 22
815 7C 1d a,h LINE
316 RS or 1 defb @
23817 20 FB gr ‘NZ,L2 coL
defb @ &2
REMOVE
UDG DATA
23819 11 3E 5D ld de,DATAZ
822 ©1 @4 00 ld bc,4
2I82S CD ZC 2o 252
DATAZ
INC COLUMN defb 24 153 126 153 24 36 36 102

3A 40 SD 1d a, (COL)
ic inc a

i;rogram 8.1

When run, Program 8.1 gives the appearance of a missile moving
slowly towards a man and returns to BASIC when the man is hit.
You could of course have a hit routine instead of the RETurn
instruction (with sound effects). This method of checking screen
positions for targets etc. is OK but a bit limiting in that all your
targets must have the same ATTRIBUTE value.

81

SCREENS (line, column)

As with the ATTR routine the line number is held in the C register
and the column number in the B register before call 9528 is made.
The routine places the parameters of the string on top of the
calculator stack in five-byte form. The use of the calculator stack to
hold string parameters is a new idea as so far we have only used it
for holding five-byte numbers. Suffice it to say that there are
calculator literals for manipulating strings, but instead of putting
the ‘string’ on the stack their ‘parameters’ are held in a five-byte
form. To put the parameters of the string on to the stack, the BC
register pair holds the length of the string and the DE register pair
holds the start address of the string. For simple strings the A
register holds value 0. A call to the routine — call 10929 — will place
the parameters in the correct order on the stack. Similarly the
routine — call 11249 — will take the last ‘value’ from the stack and
place it into A,B,C,D, and E registers; again BC will hold the string
length and DE the start address.

Program 8.2 shows the routines being used to print the character
@ at SCREEN position 0, 20; and when run will end with two @s at
0, 20; and 0, 21;. Instead of the PRINT STRING - call 8252 — we
could have used LD A,(DE) to check the actual character in position
0, 20; and then to take the necessary actions.

However there is one limitation in the BASIC SCREENS$ routine,
and that is it will only find characters in the range CODE 32 —
CODE 127; anything else will return an empty string. This in effect
rules out using this method for finding UDGs and in BASIC thisis a
big handicap in games programs. In machine code this is no problem
as there are ‘quick’ ways to fool the ROM and place the UDGs into
the character set. The systems variable CHARS — 23606/7 usually
holds the address of the start of the character set —256, that is,
15360 and is used by the SCREENS$ routine to find the character.
We could set this variable to point to the start of the UDGs —256
before the SCREENS$ call is made (in effect making UDG ‘A’ into
CODE 32, UDG ‘B’ into CODE 33, etc.) and then reset it to its
normal value afterwards. In this way we can check through the
UDGs to find the character we want.

arg 23766 2E762 CD 91 16 call S63Z
CHAFTER 8 call 3435
FROGRAM 2 ld a,2

call 54633
SCREEN$ (&,20)

FRINT AT @,20 @
CLEAR SCREEN

2I773 TE 16 ld a,22
276D ZTE 02 ld a,2 23775 D7 ret 16

82

3E @6 l1d a,® 23789 CD I8 25 call 9528
D7 ret 16

IE 14 1d a,2e CALL "VALUE TO A,E.C,D,.E

| D7 rst 16

2 3E 40 1d a,64 23792 CD Ft Z2E call 11249
D7 rst 1é

CALL FRINT STRING
CALL SCREENS$

23795 CD 3C 20 call 8252
23785 06 14 1d b,2e 27798 C9 ret

23787 OE 06 1d ¢,

Program 8.2

Program 8.3 is in effect the same as Program 8.1 but this time we
are checking for CHR$ 144 before returning to BASIC.

org 23836 238446 CD F1 2E call 11249
CHAFTER 8

FROGRAM =

SCREEN$® FOR UDG’ s CHECE. FOR CHR$ 32

i.e. CHR$ 144 (UDG "A")

23766 TO 23I83S 1A la a, (de)
SAME AS FROG. 1 FE 26 cp 32
SET CHARS. TO UDG’ s - 286 RESET CHARS. TO NORMAL
2A 7B SC ld hl, (23675) 60 I ld hl, 15366
295 dec h

16 SC ld (23606) ,h1

23840 22 I6 SC ld (2Z606) hl
REST OF FROGRAM
CHECE SCREENS$ AS PROGRAM 1
2384Z CD I8 25 call 9528 23847 TO END OF DATAZ
Program 8.3

You could of course copy the character set into RAM and keep
CHARS permanently pointing to the start —256. In this way you
can forget the UDGs and redefine any character you wish in the new
set (leave the alphabet and numbers unchanged so that text will be
unaltered). This method will allow about 50 redefinable characters
if you limit yourself to using text in upper case only and a minimum
of punctuation marks. The SCREEN$ routine will recognize these
characters as they will appear in the new character set.

There is one very important point to note when using the
calculator for string manipulation and that is that use is made of the
workspace to hold the string and/or the result of the calculation. If
this workspace is not cleared regularly then you may find that an
out of memory report will suddenly appear in your program for no
apparent reason or, worse still, the workspace will run into your
machine code routine and your program will crash. In practice it is
advisable to clear the workspace each time the SCREENS$ routine is
called. The ROM routine — call 5823 — will clear the workspace for
you (and also clear the calculator stack). So Program 8.3 should

83

have call 5823 after LD A, (DE) but remember to save the value in A
before the call.

POINT

The BASIC POINT x,y, returns a value of 1 if the pixel x,y is set
(that is PLOTted) or 0 if reset (PLOT OVER). The machine code
routine — call 8910 — requires the x coordinate to be held in the C
register and the y coordinate in the B register before the call is
made. As with the previous routines the result ends up as the last
value on the calculator stack, and, as this value is either 0 or 1, we
can unstack it into the A register to compare it to a required value.
Program 8.4 shows how this is used to check screen position 0,175,
that is, the top left-hand corner. It first prints a black square at 0,0;
then returns to BASIC as POINT 0,175 = 1. Use is made of this
routine in the ‘balloon’ program to POINT each of the balloon plot
positions before replotting the balloon. If the routine returns a
value of 1 then the HIT routine is called.

org 23760 @ CD @1 16 call 5633
CHAFTER 8 IE 8F 1d a, 143
FROGRAM 4 D7 rst 16
FOINT x,y DE 0o 1d ¢,9
@b AF ld b,175
760 IE 02 ld a,2 B@ CD GE 22 call 8910
2 CD o1 16 call 3 78% CD DS 2D call 11733
25 CD 6B @D call 435 FE o1 cp 1
3E o2 1d a,2 B C8 ret z

P'rogram 8.4

84

9 THE PRINTER

Not many programs make use of the printer but it can be handy
sometimes to have a copy of the screen (to prove to friends that you
have achieved the highest scores etc.). So with this in mind we will
look at the three BASIC commands COPY, LPRINT, and LLIST and
their machine code equivalents.

COPY

Normally the COPY routine will pass the contents of the first 22
lines of the screen directly to the printer. In machine code however
we can improve on this and specify how many screen lines we want,
and the start line, so for instance we could copy just three lines
starting from line seven.

Program 9.1 demonstrates the method used to copy all 24 lines
since some games programs have the score held in the bottom two
screen lines and will not be printed with a direct COPY command.
You can see that before call 3762 the HL register pair holds the line
start address, in our example —thisis line 1, and the B register holds
the number of lines required X 8 (24 X 8 = 192).

.org 23766 EXAMFLE 24 LINES

CHAFTER 9

FROGRAM 1 23760 21 00 40 1d hl,16384
23767 06 Co 1d b,192

COFY n SCREEN LINES 23765 F3 di
23766 CD B2 OE call 3762

HL=SCREEN LINE START 23769 C9 ret

E=LINES x 8
Program 9.1
LPRINT

This instruction can be considered the same as PRINT with the only
difference being that control characters will not work, of course, and
that a different channel requires to be opened before the RST 16
instruction to send the output to the printer instead of to the screen.
So to LPRINT “A”, for example, first OPEN CHANNEL 3, LD A,
CODE “A” then use RST 16 to LPRINT it.

Program 9.2 shows the above method used to LPRINT a string of

85

characters. Should you wish to tabulate your LPRINTing, the TAB
number should be POKEd into systems variable PRCC 23680
before the RST 16 instruction.

org 237660
CHAFTER %
FROGRAM 2

23765 11 DF S&C 1d de,DATA
ZI768 01 11 oo 1d bc,17

LFRINT STRING
LFRINT

23771 CD 3C =20 call 8252
OFEN CHANNEL = 23774 C9 ret

DATA
defs This is program 2

60 IE O3 1d a,=
2762 CD @1 16 call S637

Program 9.2

LLIST

Although I cannot think of any application in which a listing would
be required in the middle of a program, I have included this because
it is one of the printer commands and very easy to program. All that
isneeded is call 6133. Program 9.3 demonstrates this by assembling
the BASIC program and then LLISTing it.

org 23766 TOYREM org 23760
CHAFTER 9 46 REM !'CHAFTER 93 !FROGRAM I3 !
FROGRAM = S6 REM ! LLIST ;!

) 60 REM call 6133

&

ltat 76 REM ret
23766 CD FS 17 call 6133 TOROIREN Frgish A% Le Sat
23763 CY ret 9‘?]‘;’ RANDOMIZE USR S8666

Qo260 COFY

1¢ REM STEF FRINT DTG LFRINT
20 REM go QG40 RANDOMIZE USR 23766
Program 9.3

86

PROGRAM
]. O CONVERSION

If you have managed to reach this Chapter with a clear
understanding of all the previous ones then congratulations — this
one should be no problem. If you are not too sure about any of the
previous routines then I would advise you to reread the particular
Chapter before proceeding.

In this Chapter I hope to demonstrate the method of producing a
games program completely in machine code using a ‘working’
BASIC program as a guide.

No doubt you have your own method of producing a BASIC
program. Perhaps you have an idea and develop it actually on the
Spectrum adding routines as you think of them and ending with a
completely unstructured, but working, program that only you can
follow. This method is satisfactory but you may find that, if you try
to amend the program a few weeks later, not even you can follow it. I
find that the best method is to produce a flow diagram from the basic
idea and then to add routines as necessary ending with a complete
structured flow diagram from which the BASIC program can be
written and perhaps refined with colour, sound, and UDGs. More
importantly, however, this gives a program that is easy to convert to
machine code.

The program we shall convert in this Chapter is called ‘CROSS’
and started out as a program to control a man past obstacles to a safe
home. From this idea the flow diagram was produced. This involves
the main routine to set up the variables and print instructions and
the display and then a loop to check on the movement of the man and
his ‘new’ screen position. There are two points of exit from this main
loop:

1. If the man is hit we enter the HIT routine and check lives; if
there are no lives left the game ends, otherwise we re-enter the
main loop.

2. The HOME routine which also checks the number of homes
filled and adds spiders or increases the speed before returning to
the main loop.

From this flow diagram the BASIC version of ‘CROSS was

produced. If you compare the actual program with the flow diagram

you should be able to spot the various routines.

87

PRINT
first spider ‘

only

[

set

lives = 9
score, home,
& speed = 0

[

PRINT
homes
(clear)

PRINT
display

no

no

88

FANFARE
BEEP
routine

Figure 10.1 Flow diagram for ‘Cross’ program

FANFARE
BEEP

routine

Increase score
by 50 and
PRINT it

4 homes
full?

yes

home
count
4,8, 0R12?

Increase
speed

Add
random
spider

set
’ man start
position

I

erase
man

ROLL
SCREEN

check
new man
position

|

yes/

increase score
by 5 and
PRINT it

yes
hit? FLASH
routine
Ire I
reset man
HOME? on base
line

compare
hi scores

new ~ old?

PRINT new
hi score

[

PRINT
ame over
new game
prompt

wait for
key press

no

system
restart
—end—

The program, although very simple, is greatly improved by
making full use of the UDGs, colours, and sound. It does cheat very
slightly by using a machine code routine to roll screen lines left or
right one pixel at a time, but a BASIC version of this would have
been incredibly slow.

The machine code is POKEd into the correct memory addresses
by the BASIC program. This could have been carried out using a
LOAD ‘machine’ code XX, n instruction to load the code directly
from tape.

Before continuing with this Chapter make sure that you
completely understand the program workings as we will now work
through it line by line converting it to machine code.

GO TO 40

- M

)
<

]j:n‘; o Nl
Ry e (V]

44,125,533
160 CAT
@,2,d

[{R(XENY (N]
o
= =~ =

1
&
g

1]
s }a 1]

-

it
&-
- 8w
| (]
oI

o
-
L

=T

LR) B

“ MO -

89

8 CHTH 13,.1_,,1_..L4“,355335
(254,254,254 ,254 , 254,255, 16

O Jou want
11:"fyres™;

IMKEY&="4" THEM

1 "OBJECT
road 3
»

ols the EEHtraL

4 HOMES
in top f

all 4 HIMES ar
ed wibll 1nCrease
bg added and

PPIVT Hf s
FLAY " : Fﬂu:E)

4. ERIGHT 1- PARFER S EORDER =
”]

d: B

4.3 == 2L
=

4 2450,
21

45@ PRINT AT ©,0; FRFER 4, "HHt
Y, FRRFER T U, FPRPER 4 UHHHEEHE
;0 PRFER 7. " FPRPER 4 'St
;. PAFER 7.7 . FPAFER 4 ''SHSHm
i PRFPER 7;" © FAPER 4. "HBHER"

‘455 IF home<:@ THEM GO T0O
468 FRINT FRFER 4, IME 5,
A AR S T S A
47@ PRINT " i..—.b ﬁ...._i “en
~¥eo PRI

PRINT INK
-
PRINT INK

-
S4@ PRINT FRFER 4 " SHEHHSE T
EE@ PRINT PRFER B; INEKE 7;RAT 11,

. WG

R @; IME

FRINT FAPER O
al

I

: =
510 PRIMT

£2@ FRI
. -
£30 FRINT PRAPER 4

£4@ FRINT FPRFER 4;°
PSO FRINT FRFER 1: INE 7;"
HT 1,11;" MEN "; FARFER &
= . FAFER 1; IMK 7;"

LET yl=18: LET

b=

@ THEM GO TO £2@
THEM G0 TO 730
FRIMT AT 21.2

FRIMT FLAZH 1; FAPER 7;AT 1
N GAME OQUER

Z00 FFIN* H’ 14(@;“ ARother 9a
me T (! O .

240 IF INPE 5- n' THEW RAMNCOMIZ
E USR ©

SE@ IF IMNEEYS$:<:"4g" THENWN GO TO &
Q

4
SE@ FRINT FAPER S, AT 21,7;"
5 G 41

INT FAFER
FPIhT AT
IFEEN$

lDdO IF
9 *RE! E
1

R
as=
aT

.mnm'ﬂn

@ FRINT PHPEP 4. AT
REZTORE 220: FOR
b;c: BEEP . b,€¢ M

91

1849 GO TO 4S8

‘O‘@ PRINT FRFER

195@ LET x1=x2:
l@ B IF INEEY

LET gz

S0 TO &70Q

—IINFEV$-”’”

USER DEFINABLE GRAFHICS :

AB = 4y
CDE = WRg
F = &
G = %
THI = &
UKL = Qum
™ S
N =8
oP = (e
ORS = b
TU = ol

Program ‘Cross basic’

org 32244
CHAFTER 1@
FROGRAM >CROSS<

[BASIC 1 M/CODE

RIGHT LINE ROLL

RIGHT
32244 oE o8

32250 19
32251 7E

32252 ED 52

ld c,8

push hl
l1d de,31
add hl,de
1d a, (hl)
sbc hl,de
rra

1d b, 32

1d a, (hl)
rra

1d (hl),a
inc hl
djinz L2
pop hl
inc h

dec c

jr nzsld
ret

LEFT LINE ROLL

LEFT

TR269 GE 08 l1d c,8

%

32271 AF xor a
IR272 ES push hl
32273 11 1F a9 l1d de,Z=1
322764 ED 52 sbc hl,de
32278 7E 1d a, (hl)

add hl,de
rla
20 1d b,32

1d a, (hl)
rla
1d (hl),a
dec hl

FA djnz L4
pop hl
inc h
dec c

ES Jr nzsks
ret

START ROUTINE

HL holds -
Line start for RIGHT ROLL
Line end for LEFT ROLL

SFEED @ F4 7D call RIGHT
Co 48 1d hl,18624
21 5F 49 1d hl,14647% F4 7D call RIGHT
CDh @D 7E call LEFT co 48 ld hl,18624
21 8é 40 1d hl1,16512 F4 7D call RIGHT
CD F4 7D call RIGHT 1F 5@ 1d hl,20511
21 89 4a 1d hl,14512 oD 7 call LEFT
CD F4 7D call RIGHT 1F Sa 1d hl,26511
21 DF 4¢ ld hl, 16607 oD 7E call LEFT
CD @D 7E call LEFT 5F 50 ld hl,20575
21 ao 48 1d hl1,18432 @D 7E call LEFT
CD F4 7D call RIGHT ret
21 96 48 1d hl1,1843Z2
CD F4 7 call RIGHT
21 6o 48 1d hl,18432
CD F4 7D call RIGHT 80 48 1d hl, 18566
Move SFIDER line
Uses FRAMES counter F4 7D call RIGHT
Co 48 1d hl,18624
F4 7D call RIGHT
1F S0 l1d hl,20811
1d a, (2367F. @D 7E call LEFT
nop SF 5@ ld hl,20575
nop @D 7E call LEFT
nop ret
nop
nop
nop
nop SF 40 1d hl1,16479
and 2 oD 7E call LEFT
Jjr z,L3S 80 40 l1d hl,16512
1d hl,184%964 F4 7D call RIGHT
call RIGHT ao 48 1d hl1,18432
1d hl,18494 F4 7D call RIGHT
call RIGHT ret
1d hl,18494
call RIGHT
ir Lé
1d hl,1852
call LEFT SF 40 1d hl,16479
1d hl, 18527 oD 7E call LEFT
DF 4& 1d hl, 164607
@D 7E call LEFT
call LEFT 80 48 ld hl,18566
ld hl,18327 F4 7D call RIGHT
call LEFT Ce 48 1d hl,18624
F4 7D call RIGHT

1d hl, 1856@

ret

Program ‘Machine Code for Cross basic’

Machine code conversion

BASIC LINE 29

This will not be necessary in the final machine code version because
there will be no need to reset RAMTOP to protect the machine code.

93

BASIC LINES 25 AND 390

This is a subroutine used in the HIT routine and in machine code
this will be placed with the HIT routine. The subroutine is placed at
the start of the BASIC program to reduce the time that the
Spectrum takes to find it. When a subroutine is called the Spectrum
starts from the beginning of the BASIC program and works through
the line numbers until the required routine is located. You can see
that it would take longer to find if it had a high line number thus
increasing the time taken to carry out lines 700 to 730 which call
this routine at least 22 times.

BASIC LINE 40

In BASIC it takes several seconds for the Spectrum to ‘LOAD’ the
machine code and set up the UDGs so this message is displayed
during that period. In machine code, however, this is instantaneous
and the message is therefore unnecessary.

BASIC LINES 50 TO 140

This is the routine to POKE the machine code ‘ROLL ROUTINE’
into memory addresses 32244 to 32494, and again is not required in
machine code as it will automatically be correctly located along
with the rest of the machine code program.

BASIC LINES 150 TO 270 SET UP UDGS

This is the first routine that will need converting. We could of course
use SAVE ‘UDG’ CODE USR ‘a’, 168: LOAD ‘UDG’ CODE USR ‘a’,
168 but this would mean saving and loading two sets of machine
code routine, namely the main game and the UDGs. In order that
the machine code will easily fit into the 16K Spectrum we will begin
the machine code program at address 5DC1h (24001d). As with the
BASIC we will hold each byte of the UDGs in DATA form and read
through this DATA transferring each number to its correct place in
the UDG area of memory. The simplest method as you will see is to
use the LDIR instruction. The DE register pair is loaded with the
address of UDG start as held in the system variable 5C7Bh (23675d)
and the HL register pair holds the address of the start of DATA.
Routine DATA = 5DC1h to 5E68h and machine code routine =
5E69h (24169d) to 5E73h (24180d). Note that the routine is called
using RANDOMIZE USR 24169 not USR 24001 which is DATA
start.

94

BASIC LINE 280

This is a simple printing statement and is easily converted to
machine code using the print DATA ROM call (203Ch — 8252d) as
discussed in Chapter 1. So DATA = 5E77h (24183d) to 5EAlh
(24225d). This is jumped over by the instruction ‘JR 5EA2h’ at
memory address 5E75/6h. The print DATA routine =
5EA2h(24226d) to 5EAFh.

BASIC LINE 290 AND 295 MACHINE CODE 5EB¢ TO 5EBE

In this routine we wait until a new key press is registered and check
the key for 'y’ (the HALT command is not absolutely necessary). If
the key pressed is not ‘y’ then we skip the instructions by jumping
(NZ) to 608Ah (247144d).

BASIC LINE 300: 1 CLS MACHINE CODE 5EBF TO 5EC6

This routine is straightforward and is discussed in Chapter 1.

BASIC LINES 30¢:2 TO 330

This again is carried out using DATA store and PRINT string
routines. The first set of DATA is held at 5ECA to 5F72 with the
PRINT DATA routine at 5F73 to 5F83. The second set of DATA is
held from 5F84 to 5FF9 and the PRINT DATA routine at 5FFA to
6002. The DATA could have been lumped together with just one
PRINT DATA routine.

The PAUSE 0 routine is 6003 to 680C; note that bit 5, (IY + 1) has
to be reset from the previous PAUSE 0 routine. Try removing the
RES 5,(IY + 1) and ‘see’ the result.

BASIC LINE 374:1 CLS ROUTINE 600E TO 6012

This uses the alternative methods of clearing the whole screen by
POKEing zeros into all screen addresses (not affecting the
ATTRIBUTES).

BASIC LINES 37¢2 TO 390

DATA for print routine = 6016 to 6075
PRINT data routine = 6076 to 607E
This is followed again by the PAUSE @ routine.

BASIC LINE 400

Using the set BORDER colour routine and set permanent attribute
95

colour as in Chapter 1, we can convert this line as routine 608A to
609D.
The CLS call puts the colours on the screen as in BASIC.

BASIC LINE 4190

This line sets the initial value of the high score. We will assume that
the value will not be greater than 65 535 and as such use the first
two bytes of the printer buffer to hold its value (address 5B0g/01 —
23296/7). This is easily set to zero by LD HL, 0000h and
LD(5B0@),HL and is shown in routine 609C to 60A1.

BASIC LINE 420

DATA for printing = 60A4 to 60C8
PRINT DATA routine = 60C9 to 60D6

BASIC LINE 430

This sets up the initial values of ‘lives’, ‘score’, and ‘home’. The lives
can be held as one byte, the score as two bytes, and the home as one
byte. We will again use the printer buffer to hold these values.
Address 5B02 holds ‘lives’, 5B03/4 holds ‘score’, and 5B@5 holds
‘home’. These initial values are stored using routine 60D7 to 60E5.

BASIC LINE 449

This line resets the speed to zero by replacing the RET instructions
at the correct points in the LINE ROLL subroutine. Routine: 60E6
to 60F0.

BASIC LINE 459

DATA for printing = 60F4 to 6128
PRINT DATA routine = 6129 to 6136

BASIC LINE 455

A check is made to see whether home <> @, that is whether the
screen display has to be printed or left as it is just clearing the
homes. We need to fetch the value stored in *home’ 5B05 and check
that it is not zero using “AND A’. If this does not set the zero flag we
jump to the PRINT display routine. If zero flag is set we skip the
PRINT display routine and jump straight into the game proper.
Routine: 6137 to 6140.

96

BASIC LINES 460 TO 640

This is the longest routine in the program and demonstrates just
how tedious printing a display actually is.

DATA for printing 6141 to 63D1

PRINT DATA routine 63D2 to 63DF

BASIC LINE 650

You will notice that this PRINT routine contains the variable
‘lives’, so before we can use our PRINT data routine, the correct
value of ‘lives’ must be placed into the DATA for printing. This is
achieved by using the routine 63E0 to 63E9 which just collects the
value ‘lives’ from 5B02 then adds 30h (48d) to convert it to the
correct ASCII value and finally ‘POKES’ it into DATA, address
6401.

DATA for printing 63EA to 640F

PRINT DATA routine 6410 to 641D

BASIC LINE 669

This line sets the initial values of the man screen print position x1,
y1l and the ‘new’ position used in the SCREEN$ routine x2, y2.
Again we will use the printer buffer to hold these values

x1 = 5B06
yl = 5B@7
x2 = 5B08
y2 = 5B0@9

This is easily carried out in machine code by LD HL,1014h:
LD(5B@6), HL : LD(5B08),HL. You will notice from the above how
much easier it is to use hexadecimal numbers and not decimal ones.
It is quite clear that with LD HL, 1014h that H will hold 10h (16d)
and L will hold 14 (20d). Routine 641E to 6426.

BASIC LINE 670

As we are printing just one character whose position is dependent
on the variables x1, y1, it is easier to use LD A,n: RST 10h than a
PRINT DATA routine. Routine 6427 to 6445.

BASIC LINE 680

Routine 6446 to 6448. We will leave the ROLL routine at address
(32295) TE27.

97

BASIC LINE 699

We will use the routine described in Chapter 8 to find SCREEN$
(x2, y2) then unstack the ‘value’ into the A,B,C,D,E, registers. The
character can then be found by LD A,(DE) and compared to 20h (32).
Remember that we must clear the workspace before continuing
with the program. Routine 6449 to 645D. If the character is not a
space then we jump to the HIT routine that starts at address 6548h.
The BASIC main loop jumps to line 880.

BASIC LINE 880

Here we check that the man is not on the top screen line, that is,
‘home’. In machine code we get the value x2 by LD A,(5B#8) and
compare it to 0. If it is zero we jump to the home routine at address
66A6. Routine 645E to 6465. The BASIC main loop jumps to line
1050.

BASIC LINE 1050

Because we are printing one character using two variables x2, y2,
we will use LD A, n: RST 16¢h (as line 670). Routine 6466 to 6484.
BASIC LINE 1060

This is a case of collecting the value held in 5B08/9 and placing it in
5B06/7. Routine 6485 to 648A.

BASIC LINE 1079

At this point we will change the BASIC to improve the game.
Instead of using the LAST KEY variable to read the keyboard, we
will read it directly using the IN A,(C) command and so allow all
keys to be read and diagonal moves made.

To read key ‘1’ we need to read half row 1 to 5 and as described in
Chapter 5 the routine required is 648B to 6493.

BASIC LINE 1080

Because the BEEP is not important in its length and pitch we need
not be precise in the machine code conversion. We can use the BEEP
routine call #3B5(949d) instead of using the calculator. Routine
6494 to 649C.

BASIC LINE 1099

Here we are updating the line position (x2) of the man so we collect
the value in 5B@8, decrease it by two, and put the new value back

98

into 5B@8. The score is increased by collecting the value in 5B23/4,
adding five and putting the result back into 5B#3/4. Routine 649D
to 64AF. To print the score we will use the STACK BC and PRINT
VALUE ON STACK routines, but first we define the ‘PRINT AT
parameters. Routine 64B1 to 64C8.

BASIC LINE 1109

Again using the IN A ,(C) instruction we can read the keyboard and
update the value of y 2 (5B#9). Routine 64C9 to 64F1. have added a
routine to check for key ‘6’ being pressed to give a return to BASIC
facility at this point. (This is necessary to ‘SAVE’ the program once
it is running properly.) Routine 64F2 to 64F4.

This completes the main loop but you will find that, if this
program is run, it will be so fast as to make the man almost invisible
as he flashes on and off between screen rolls. Because of this we need
our delay loop to hold the man for a moment as suggested in Chapter
6. Instead of our normal loop we can add a traffic noise sound effect
as routine 64F5 to 650B. The final JP 6427 will take us back to the
beginning of the main loop (line 670).

Hit routine

BASIC LINE 709

Here we introduce another variable a = x2. We will use address
5CB@ to hold this value (an unused address in the systems
variables). The FOR/NEXT loop variable ‘b’ can be replaced by LD
B, 19h(25d). This value is then placed in address 5CB1 to be used in
the next routine. Routine 6548 to 6561. The GOSUB 25 call is
replaced by call 650F.

BASIC LINE 25

This is easily converted using the calculator to stack .01 . b — a is
simply LD HL,(5CB9) : LD A ,H: SUBL; the values a and b being
stored consecutively at 5CB0/B1. We then use the stack value in ‘A’
routine 2D28 and call BEEP routine 03F8. Routine 650F to 6521.
BASIC LINE 30

This is another case of using LD An : RST 10h as there are two
variables in the PRINT routine. Routine 6522 to 6547.

BASIC LINE 730

Variable a is already stored at 5CB#@, so we can set up a loop taking

99

this value and increasing it by two after each pass until the value
reaches 14h(20d). Routine 6562 to 6573.

BASIC LINE 749

Here we get the value of ‘lives’ from address 5B02, reduce it by one,
and return the new value to 5B02. To print this value we just set the
PRINT AT parameters then get the value, add 30h(48d) to convert it
to ASCII code, and print it. Routine 6574 to 658E.

BASIC LINE 750

Routine 658F to 6593. This involves resetting value x2(5B@8) to
14h(204).

BASIC LINE 760
Routine 6594 to 659A. This is quite straightforward. If ‘lives’ not

zero we jump to 6446, that is, back into the main loop.

End game routine

BASIC LINE 770

This involves getting the value of hi score and score and checking
which is greater. It is quite easily done by using SBC HL, DE and
then checking the state of the carry flag. Routine 659B to 65A. If hi
score is greater than score, we jump to 6611.

BASIC LINE 789

This involves transferring score 5B@3/4 to hi score 5B0/01. Routine
65A7 to 65AC. To print the hi score we use the STACK VALUE IN
BC and PRINT TOP VALUE ON CALCULATOR STACK routines
having first set the PRINT AT parameters. Routine 65AD to 66C2.

BASIC LINES 799 TO 800

DATA for printing = 65C5 to 6610
PRINT DATA routine = 6611 to 6619

BASIC LINE 840 TO 850

Here we use LAST KEY variable to wait for a key press and take
action accordingly. Routine 661A to 6632. If the key pressed is not
'y’ (79h) or ‘n’ (6Eh) then we jump back into the WAIT loop.

100

BASIC LINE 869

This is carried out using LD A,n : RST 16h followed by JP 60C9 to
return to the main loop reprinting the display but leaving the ‘hi
score’ unaltered. Routine 6633 to 6655.

Home routine

BASIC LINE 899

Here we use the PRINT DATA routine but first putting the required
values of x1, y1 and x2, y2 into the DATA.

DATA for PRINTING 669A to 66A5

SET value of x1,y1,x2,y2 66A6 to 66B1

PRINT DATA routine 66B2 to 66BF

BASIC LINE 900

This of course is unnecessary in machine code as the DATA start
does not need to be reset.

BASIC LINES 910 TO 920

FANFARE BEEP call 666A
The routine is covered in detail in Chapter 7 and so needs no further
comment. Routine 66C0 to 66C2.

BASIC LINES 930

Another set of routines to collect current values of ‘home’ and “score’
and update each one followed by a routine to print the score using
the STACK VALUE IN BC and PRINT TOP VALUE ON STACK
routines. Update routine 66C3 to 66D3. Print score routine 66D4 to
66E9.

BASIC LINE 950

This is a check to see whether all four homes are full and is easier to
program in machine code than in BASIC. Routine 66EA to 66F1.
You can see that we first LD A, (56B@5) that is, ‘home’ count, then
mask it with AND 03h. If we are left with a non-zero answer it will
show that the original value of ‘home’ was not a multiple of four. If
the result is not zero we jump back into the main loop JP 641E.

BASIC LINE 960 TO 980

These routines are used to increase the speed of the game when
‘home’ = 4,8, and 12. This is done by removing the RETURN

101

instructions in the ROLL subroutine allowing certain lines to be
moved by an extra pixel: line 960 = 66F2 to 66FF, line 970 = 6700 to
6709, and line 980 = 670A to 6712.

BASIC LINE 985

We now check that ‘home’ is not greater than 36. If it is then the
‘ADD EXTRA SPIDER’ routine is missed and we return to the main
loop. We simply subtract 37 from the value of ‘home’ and if the carry
flag is not set (that ishome=37) then we JP NC, 6129. Routine 6714
to 6718.

BASIC LINE 990

This routine is discussed in Chapter 4 and needs no further
explanation except to point out that in this case we use the modified
SEED value in BC and mask 1Fh (31d) : LD A,C: AND 1Fh then
subtract two and check for the carry flag set. This method was
chosen because a true random number was not necessary. Routine
6719 to 6740.

BASIC LINE 1000

Routine 6741
All that is required is to increment the value in ‘a’.

BASIC LINE 1005

A check is made that the value of ‘a’ is not greater than 31, that is,
off the screen; if it is then ‘a’ is reset to 0. Routine 6742 to 6746.

BASIC LINE 1010

A check is made that the screen position (10,a) is clear using the
SCREENS$ routine. This entails placing the value ‘a’ into the B
register and Oah (10d) into the C register, calling STACK VALUE
IN BC and SCREENS$ routines then removing the parameters from
the stack into A,B,C,D,E registers and finally checking for
SCREENS (10,a) = 20h(32d). If all is satisfactory then we get the
original value of ‘a’ (POP AF) and continue. If the SCREEN$
routine indicates that the position is not clear then we JR 6741 thus
stepping to the next screen position. Routine 6747 to 675E.

BASIC LINE 1020
This is a repeat of the previous routine except that the value of ‘a’ is

102

incremented before the SCREENS$ routine. Routine 675F to 6776.
Note that the value of ‘a’ is saved before the SCREEN$ routine
(6760 PUSH AF) to be used in the next routine.

BASIC LINE 1030

The value ‘a’ is POPped back into AF and decreased. This is then
placed into the PRINT DATA, and the PRINT routine called.
Routine 6777 to 6792.

BASIC LINE 1030

This is a repeat of the FANFARE BEEP and just requires CALL
666A. Routine 6793 to 6795.

BASIC LINE 1040

Finally we jump back into the main loop using JP 6129. Routine
6796 to 6798.

You can see from the above that it really is very simple to convert
a BASIC program to machine code as long as you take it one step at a.
time and plan your program with machine code in mind.

One last point that you will no doubt have noticed is that it is
better to work in hexadecimal rather than decimal as for instance
many of the routines require the loading of BC with line/column
parameters. Take another look at the LEFT/RIGHT ROLL
subroutine. The decimal screen addresses mean very little, with no
apparent pattern, but if you look at the hexadecimal equivalents
you will see some sort of pattern giving a clearer indication of what
is actually happening.

All that is necessary now is for you to dream up your own brilliant
and original program and start converting it to machine code. I wish
you good luck and hope you enjoy many happy hours of
programming with not too many crashes.

arg 42000 24001 defb $6c

defb %01 $02 204 $7f $7+ $fF %14
SDCLH defb %08
deth $0Ff 12 $22 $7+F $FF $FF 28 defl $+0 $48 $44 $fe $ff $fF %14
defb $10
defb $80 $40 $20 $fe $fe Hff $28
detb $10 deth $68
defh $7+ $7+ $7F $7F $7F $FF $15 defb 20 $1+ 2T $2T $7f $7f $14
defb %08 defh $08
dath $fFf $fe $fe $fe $F+ $f+ $40 dath $7f $7+ 47+ $7+ $ff $£Ff 02
deth $8¢ defh $61
deth #0600 $f8 $cd $cd $fe $fe $7§ deth $fe $fe $fe $fe $fe $ff $ab
defb $1¢ deflti $16
deth $18 %18 $24 $7e $3c $5a $a5 diefh $10 $29 $c7 $00 $246 $00 BOHO
defb $42 defts 00
defh $38 $28 $92 472 $38 %38 78 defb $00 $44 $£f $44 $44 $+f %44

103

defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb

SE&9h
24169
24173
24176
24179
24181

SE77h
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb
defb

SEAZh

24250

24252

SEBFh

24055

2585 3

104

$00
E 115
FO0
$00
$O0O
$160
%07
$O0
sff
$60
$7c

FO0
$O06
$06
OO

ED
21

@l

18

$16
$6+
%75
$69

$be
$69
6+
$28
$79
28
$be

SB
Ci1
A8
1<)
2B

$ab

20

$73

$be

$29

$29

8A

a2

$55 $8F 97 $al $ad
$aa $f1 %e? Hc5 65
$10 $fe $TF $1+f BOf
$00 %00 $le $ff ff
54 478 $7f $ff $fe
$OT $O2 BOf $TF Hf S
$78 $f0 %20 $55 $ff
7B SC 1d de, ($5c7b)
SD 1d hl,%5dcl
15 ld bec, $#90a8
ldir
jr +%$2b
$OT $44 $6f 20 $79
$77 $61 %be $74 20
$74 %72 €75 $467 $74
$77 %3 $16 $0d $0b
$65 477 $16 $0f b
$6f
1d a,$a2
16 call $1601
SE 1d de,$S5e77
D0 l1d bc,$602b
20 call $203c
halt
@1 6E bit S, (iy+6i]
jr = ,—%07
SE 1d a, ($5co8)
cp %79
&6 ip nz,$608a
ld a,$a2

24257
24260
24267

SECA
defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb
deth
defb
defb
detb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb

24437
24446
24443

24444

CD
cD
C3

%16
47
$5

$75
$69
H20
$61
$61

$20
$be
w64
$72
$2c
$be
$67
$94
$20
$20
$al
$9F
$20
$773
$20
$6e
%74
$bc
$61
$68
$65

$20
%73

$20
74
$69
$b6C
$2e
$65
$20
BHF
$65
£20
$9d

o1
&E
f45S

$a4

$70

74

$72

$be

$72

%20 9

6+

$b6C

$be

$9d
$od

16
@D

SF

$Gb

$od

$65

$6+F

$61

$90

$260

$ad

$61

68

$61

64

$20

$9d

16
ok

[51%]

2

call $1601
call $odéb
ip %573

$61

$72

s6F

$21

$ae

$ad

74

64

$42

$6+

61

$73

$64

69

$69

FZO

$al

%41

$72

$20

20

$ad

$61

$4d

$20

$76

$64

92

$6F

$67

$469

sad

$67

$b6b

$9d $20

1d a,$02
call $1601
1d de,$Seca
l1d bc, $06a9

call $203c

$45

$467

$96

260

$61

$65

69

E 20

faz

£9e

$bC

66

$69

73

24449

SF84h
defh
defb
defh
defhb
defb
defb
defb
defh
defh
defb
defh
defb
defh
defb
defb

defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defh

SFFAR
245760
24573
24576
24579

24583

24584
24588

HOOER
24590
243592
245938

6016h
defh
defb
defh
defb
defb

C=

$od
$bHC
E: TYod
$45
$ET
FL9
$bC
$65
$20
$77
$67
$72

S
$be
$20

65
$20
$61
$be
48
$44
$b6C
$b6C
$12
09
$61
$sbhe

@b
cD
C3

FA SF

$78
$61 $64
$64 $20
$4d
$6d
$72

20

SF
[=15)
C 20

@1 AE

CE
F9

01 6E

18
44 ©E
76 b6

ip $Sffa

H6T $6T $b1

$20 $48 $4c
$bb
68
260
6T
%461
$bH1 $20
E64
$68 $65
77 369
$79 $1é6
$735 20

%79

ld de,$5f84
ld bc,%0076
call $203c
res S, (iy+$o1
halt

bit 5, (iy+$01
ir z,-%07

ld b,%18
call $0ed4
ip %6076

07 $0b $47 $4f $4e €54

$4c $53

$0d %ad

20 E20

$20 $20 $5e $20 $20 20

defh
deth
deth

defb
defh

&HOT bR
24494

2476
247172

a1z]

6GH8AN
24714
24716
24719
24721
24724
24726
24729

LHHP(ChH

24772
247:
24778

LOA4R
defb
defb
defb
defb
defb
defh

$12
00
$16b6
$773
F20
379

26

B57

11

IE
CD
3E
32
CD
CD

=] k)

®© R

$11
$20
260
F20
$20
20

$20 $20 20

%20 $20 $3Ic
®ol 06 $IE1
$TT 20 %34
$27 20 %38
$00 320 %12
$12 $05 50
$651 Fhe 79
$74 BHf $20
16 b&é 1d

(515]

20

@1 AE
CE o1 6&E
Fe ar
a5 1d
9B 22
68 1d
8D SC 1d
@z ld
@1 14
&E @D
G600 1d
@0 Sk 1d
29 jr
$04 $16 $aa
$20 F20 20

$20 20 20

F20 $20 20

$Te $12

12 00 20

$20 $3T5 $20

O 12 $O1

01 $T0 $12

$65 $773
$b6b 865

$4c 441

de,$6016

res 9, (1y+$o1l
halt
bit S, (iy+$a1l

2, ~$07

a, $05

call $229b

a,$468
($5c8d) , A
a, $a2

call $1661
call $0déb

hl . HOOOO
($5b®6) , h1

+$25

$OO F20 H20
$20 420 $20

$9e $9f 20

105

defhb
defb
detb

&6C9h
24777

24779
24782
24785
24788

20
20
$20

CD
11
@l

CD =

$20 $20

$20 $20 $70 $20

24806

24808
24811

24814
24817

LOF4h
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
dethb
defb
deth

612%h

%16
$9d
$9d
$9d
$9d
$11
04
$9d
$11
$9d
$9d
$11
€04

24877 3E

24875
24878
24881
24884

106

CcD
1=Y
a1

CD

()
A9

C2

DS

29

$9d

$9d

07

$9d

$9d

1d a,$02

=) call $1601
60 ld de, $&0a4
(al=] 1d bc, $002%
20 call $263c

1d a,$a9

$20 20 20 $20

SB 1d ($5b02),a
(al5) 1d hl, $0060
SR 1d ($5b@3) ,hl
Kor a
SE 1d ($5b0S5) ,a
1d a,%$c9
7E 1d ($7ea9),a
7E ld ($7ec),a
E ld ($7ed%) ,a
b1 ip %6129
$00 411 $04 $9d $9d
$07 $20 $11 404 $9d
$9d $9d $11 %07 $20
$9d $9d $9d $9d %$9d
$20 %11 %04 $9d $9d
$9d $9d $11 %07 20
$9d $9d $9d
ld a, 4602
16 call $1661
64 ld de,$60f4
[=X5)
20

6141k
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defh
defb
defb
defb
defb
defb
defhb
defb
defb
defb
defb
defb
defb

defb
defb
detb
defh
defhb
defb
defb
detb
defb
defb
detb
defb
defb
detb
defb
detb
defb
deth
defb
defh
defb

defb
defhb
def b
defb
defb
defh
defb

.

A7
c2
c3

90
$9c
$20
$7cC
$20
$26
$20
H20
20
$26
20
$20
$9cC
$20
26
%20
$20
5 20
$9c
$9¢
$01

$04

$8c

$8c

$8c

$al

$07

$20

$9cC

$9C

16

20

20

$a

$al

$20

$20

$20

$9cC

o4
63

$16

$8c

$8c

$8c

$8c

$al

$al

$al

$al

20

260

$20

260

62

20

20

ld a, ($5bo5
and 2

ip nz.$641e
ip $&63d2

$05 $8c $8c
$8c $8c $8c
$8c $8c $8c
$8c $8c #8c
$8c $11 $05
$al $al $20
$al $al $20
$al $a $20
$a2 $20 $20
$20 $20 $9c
$20 $20 $9c

$20 $20 $20

$20 20 $20
#2600 H20 $al
$20 $a $a4d
$al $tad $20
20 20 $20
$20 10 $O7
$9C 20 $20
$9c $Fc $9cC
20 20 $20

$20 $20 $20

$20 $20 $20
S0 20 $20
$al ¢al sal

$20 $ad $al

)

$8c
$8c
+8c
$8c
$1a
260
260
$20
260
$9¢c
$9¢’

20

$ad
20
20
20
$7C
$20
$9¢c
H20

16

$20
E o}
$a2

$al

defh
def b
defb
deth
defb
deth
defth
detb
defh
defb
defb
defb
defb
defb
detb
defb
defb
defb
defb
defb
dethb
defb
defb
detb
defb
defb
defb
defb
defb
defb
defb
defh
defb
detfb
defb

defb
defb
defb
defb
detb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb

defb
defb
defb
defb

$al
16
$20

26
s
20
20
$26
26
$20
26

20 9

$a4d
H20
£20
$20
$20
20
$5d
$9d
$9d
$9d
+9d
+9d
$9d
$9d
HOO
16
$9d
$9d
$9d
$9d
$9d
$9d
$9d

$9d
$20
$90
$91
$20
$20
$95
$97
$94
$10
$07
$2d
$2
$2d
$2
$2d
2d
$2
$2
$20
$20

$20
$90
$20
$20

$07

£9C

$9c

$9d

$9d

$07

$9d

$9d

%9d

$91

$20

%9d

$9d

$9d

$9d

$16

+9d

$9d

$9d

20

$2d

$2d

2d

$2d

€20

$20

$20

$2c

26

20

$20

$al

$9d

$9d

$9d

+7d

b

$9d

$9d

$9d

$9d

$95

$93

20

$20

®2d

$2d

%2d

$2d

$20

$71

$20

$20

+9cl

$7d

$9d

+9d

FOO

$9d

$9d

$9d

+9d

260

$92

$260

20

$2d

$2d

$2d

$2d

90

$70

90

20

%9C

$9C

260

20

20

20

$al

ta

04

$9d

$72d

$9d

%$9d

+9d

$9d

$9d

$9d

160

®20

T

H20

20

$2d

$2d

$2d

$2d

$91

20

€91

620

$9c

20

k pult]

FL0Q

$al

$ad

$a4d4

+9d

$9d

$9d

+$9d

%11

$9d

$9d

%9d

$9d

ka0

£90

$94

92

26

2

$2d

®2d

%2d

H20

20

k: Il]

$70

detb
defb
defb
defb
defb
defb
defb
defhb
defb
defb
defb
defb
defb
defb
defb
dethb
defb

defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
defb
detb
defb
defb
defb
defb
defb
detb
defb
defb

deth
defb
defh
def by
deth
defhb
defb
detb
defb
deth
defh
defh
defb
defb
defb

$71
$20 $20 $20

$3d $3d $3d

$3d 43d $3d

$7d $3d $7d

20 $20 20

$20 $20 €97

$20 20 $20

$20 20 20
160
$07 $2d $2d
2
$2d $2d $2d
2d
$2d $2d $2d
2
$2d $2d $2d
2
$20d $10 $04
260
£97 $98 $20
$95
$20 $20 $95
$9b
$9a $9b 20
20
$20 $20 699
$9d
$9d $92d $9d

%9d $9d

$7d $9d

$9d $9d

$20 $20

20 $20

$20 $20

$20 $20
$20

92

o1 16

$2d

$2d

$2d

$2d

$Pa

260

$20

11

+7d

$9d

$9d

$7d

$260

260

20

$20

ld

$07

$2d

$7d

%3d

%=d

$20

$20

98

$260

$2d

$2d

$2d

$2d

$9b

+9d

$9d

+$9d

20

20

20

$20

$3d

$2d

$73d

%7 d

16

97

$20

$2d

$2d

%2d

$2

F20

98

79

95

$160

$9d

$9d

$7d

$92d

2060

260

s

20

E Ty

call $1661

%3d
$7d
+3d

ad
H04
98
20

20

97
%2c
%$2d
$2d
$2d

20

HPa
G20
06

$9d

$7cl
$9d
9
20
20
H20

$26

107

41 61 1d de, %6141 IE 26 1d a,$20
71 o2 5 D7 rst %10
& 20
&H446N
a2 SE ld a. 28670 CD 27 7E call $7e27
6 add &, $7¢
12 a1l 64 1d ($6401) ,a
26 Jjr +%24
L4494
08 SR 1d bc, ($5ba8)
25 call $25738
2 call $2bf1
$11 301 10 $07 $20 4537 %47 1d a, (de)
4 gttt push af
52 445 $20 $146 15 $0b $20 25685 CD BF 16 call $16b¥
%4d 25688 F1 pop af
$45 $4e $20 $11 P05 $160 $00 25EL89 FE 20 cp %26
39 2546791 C2 48 &5 ip nz,$46548
defh $11 301 $10 407 $20 $48 $49
defb $2d &4SER
defb $57 $47 $4F $52 445 %20
25694 A 08 Sk 1d a, ($5bo8)
254697 FE @0 cp $00
64160 20699 CA AbL &b ip z.%bbab
28616 IE ld a,$a2
29618 CD @1 call $1601
25621 11 EA 1d de,$6Tea
20624 a1 26 ld bc, %0626 &L4bb6h
25627 CD 3C call $263c 265702 IE a2 ld a, %02
20704 CD o1 16 call $1601
25707 3E 11 ld a,%11
287609 D7 rst %16
hu710 IE o8 1d a,$08
14 16 ld hl,%1014 5712 D7 ret %16
a6 SR ld ($Sbob) ,hl “571" IE 10 ld a,$1é
(515 2] ld ($5ba8) , hl 5715 D7 ret %16
“ﬂ716 IE @8 ld a,$08
25718 D7 ret %16
“‘719 IE 16 ld a,%$16
ret %160
SE ld a, ($5bo8)
ret 410
ld a,$02
call %1661
ld a,#%11 SE 1d a, ($8ba9)
et $10 rst $160
ld a,408 1d a,$96
ret %10 ret $160
ld a,¢10
ret %10
1d a,$08
ret $10 &H48%5h
ld a.%16 2573) 1d hl, ($5b©83)
ret %10 25736 22 06 SE ld ($Sheé) ,hl
Id a, ($5bhoé)
ret %16

1d a, ($5bo7)
ret $10 &48Rh

a1 FE

32
7 o5
25754 CD ES

649Dh
28757
29760

25761

E7

o5 O
R

25762 . @8 SR
2H765 2A O SB
25768 2

28769

289776

285771

28772

28773 @I SR
25776

25777

25779 CD o1 16
25782 3E 146
25784 D7

25785 3E 1S
25787 D7

25788 TE o7
285790 D7

25791 ED 4R o3
25795 CD 2B 2D
25798 CD EZ ZD

64C%h

25801 @1 FE
25804 ED 78
25806 CE 47
25808 20 OE
25810 IA 09
25813 FE 1E
25815 28 a1

26817 =
25818 32 o9
25821 C3 FS
25824 CE 4F
25826 20 ob
25828 3IA a9
25831 5

=
Pl = RIS

25835 D

ld bc,$f7fe
in a, (c)
bit @,a

jr nz,+%1lc

call $03IbS

1d a, ($5ba8)

dec a

dec a

ld ($5b68) ,a

1d hl, ($5b&3)
inc hl

inc hl

inc hl

inc hl

inc hl

ld ($Sb®3) ,hl
nop

ld a,$02

call %1681

ld a,%16

ret %16

ld a,%15

ret %10

ld a,$07

ret %16

1d be, ($5b®3)
call $2d2b
call $2del

1d bc,seffe
in a, (c)

bit @,a

Jr Nz, +$0e
ld a, ($5bo9)
cp $1f

jr oz, +%01

irnc a

lcd ($5bOF) . a
ip $64+5

bit 1,a
Nz, +$0e
ld a, ($5b&9)
cp $00

G T, +%01
dec a

&4FTh

25845
25847
25850
25853
25854
25859
25856
25859
25869
20861
25862
20863
208464
25865
25866
25868

&H5aFh
25871

&S1eh

)

32 a9
ES3TES
CE &7
c8
06 GA
11 .78
21 o1
S
DS
S
CD BS
Ci
D1
Ed
7D
&F
oY)
1@ F1
EF

defb 434

25881
25884
25887
25890

25892

25895
25897
25898
25900
25901

25903
25904
25904

286907

baa $2T

B&

2R
F3
()
a1

15

(53]

11

10

=
)

64

b4

SC

2D
@z

16

ld ($5b09) ,a
ip %645

bit 4,a
ret =

1d b, $6a

ld de,$0078
ld hl,$00d1
push hl
push de
push bc
call $60IbS
pop bc

pop de

pop hl

1d a,l

inc a

1d 1,a

nop

djnz —$Gf
ip %6427

ret 428

®d7 $0a $3d I8

1d hl, ($5cbe)
l1d a,h

sub 1

call $2dZb
call $673+8
1d a, %02
call $1661
1d a,%15
ret $160

1d a,%a1l
rst $10

ld a,%11

rat $10
ld a, %08
ret €10
1d a,%16
rat $10

109

é5927

5548h
928 3

25931

o8

BO

19
2 Bl
aF
aF
28950 FE 23
25952 20 EF
6562h
aF
OF
Bo
259464 ZIC
25965 32 RO
25948 FE 14
20976 20 EE

25981 CD
25984 IE

25998 D7

110

16

i S
-
X

aC
&5
65

=
]

| =
-

SC

%)
o]

SR

1d a, %08

ret %10

ld a,%16

rst $10

l1d a, ($5cbha)
ret $16

1d a, ($5bo?)
ret %1a

1d a,$%26
ret %10

ret

1d a, ($5be8)

ld ($5cbé) ,a
ld b,%$19

ld a,b

push b

ld ($Scbl),a
call $&650+
call $650f
pop bo

inc b

1d a.b

cp %273

Jjr onz,-%11

call $&650f
call $&50f
ld a, ($Scbé)
inc a

inc a

ld (#$5cb@),a
cp %14
jr nz,—%$12

ld a, ($Sba2)
dec a

ld ($5ba2) ,a
ld a,$02
call $1661
1d a,%16
ret $10

ld a,%16

st $1¢

ld a,$19
ret $10

l1d a, (35bho2)
add a,#$I0
rst %16

659Eh
266011
26012
26015
26019

26021

26048

26051

noy
[V

G2

8

$12
F20
$26
260

26
$20
B4f
20
H20
$1é6
$oe
$bhe
$6F

$46d
26

$65
$bf

14

a2 Spg
a2 SR
44 64
03 5

SR 00 5
LA

@ SR
00 SR
2B 2D
a2

91 16
16

15

1B

SLED
4C
$01 H11
20 $20
$20 $47
56 $45
$20 20
$O0 $12
$74 %68
65 20
$73 $20

B

1d a,$14
1d ($5b92) ,a

1d a, ($5bhe2)
and a
ip Nz, %6446

Hor a
1d hl, ($5b&3)
ld de, ($5bhoo)
sbc hl,de

ir C.tEba

1d hl, ($5ba3)
ld ($5boe) ,hl
push hl

pop bc

call $2dZb

1d a,$62

call $1601

1d a,$1é6

rot $16

ld a,%15

ret %160

ld a,%1b

ret $16

call $2del

jr +$4c

$146 $ac

$20 $20
$4d %45
52 420 $20 $2¢
E20 20
20 %20
260
$20 $28 47

28 $6e

defb $20 $20 $20 $20 26218 04 07 1d b,$a7
S5C 66 1d hl,$4665c
1d a, (h1)

6611h
26129 11 CS 65 1d de,$65cS 78 66 1d ($6678) .a
26132 01 4C 09 1d bec,$004c inc hl
26135 CD 3C 20 call $263c push bc
push hl
: rst 28
defb $34 $ec $4c %cc $cc $coc $3I8
El pop hl
halt 2
bit S, (iy+so1 é; ;35:’;T1)
S CD 28 2D call $2d28
T, s {1y e CD F8 03 call $078
1d a, ($5cob) Al S bl
CREkoe 26248 C1 pop bc
Jrnz ; + 305 26249 27 inc hl
26250 16 EZ djnz -$1d
26252 IE o1 1d a,$01
26254 CD 28 2D call $2d28
' 26257 3E 14 1d a,$14
LOLOLI 2RS4 il ey # i 26259 CD 28 2 call $2d28
26262 CD F8 63 call $038
26265 C9 ret
66N
26163 IE O2 1d a,$62
26165 CD 01 16 call #1661
26168 IE 11 1d a,$11 669AR
26176 D7 rst $16 defb $11 $08 $16 $08 $16 $62 $04
26171 IE 05 1d a,$65 defb $26
26177 D7 ret $16 defb $16 $00 $04 $94
26174 3E 16 1d a,.$16
26176 D7 ret $16
26177 FE 15 1d a,$15
26179 D7 rst $16 66A6h
26186 IE 07 1d a,$07 26278 2A 06 SE 1d hl, ($5b&&)
26182 D7 ret $16 26281 22 9F 66 1d ($669f) ,hl
26187 3E 20 1d a,$20 26284 2A @8 SE 1d hl, ($5b&8)
26185 D7 rst $10 26287 22 A3 b6 1d ($66a7),hl
26186 TE 26 ld a,$20 26290 IE 02 1d a,$02
26188 D7 ret $10 26292 CD @1 16 call $1601
26295 11 94 &6 1d de, $669a
26298 @1 OC 0o 1d bc, $6606c
26189 3E 20 1d a,$20 26361 CD 3C 2@ call $263c
26191 D7 ret $16 26304 CD 6A b6 call $666a
26192 TE 20 1d a,$20
26194 D7 ret $16
26195 C3 C9 6@ P $6GCT
6656h @5 SE 1d a, ($5b65)
defb $00 $00 $00 $00 $00 $60 sed inc a
defb $0b 12 05 SE 1d ($5b6S), a
defb sed $0b $f0 $10 $ec $6b $ec o3 SE 1d hl, ($5b

detb $1@ 32 00
deth $ec 30b $ec $10
GI SR ld ($Sb@73) ,hl
push hl
az ld a,$a2
bb6AR 91 16 call $1661

111

1d a,$16 detb %al $0f %34 $T7 €16 $04 34

rat %16 deftb %80

1d a,$15 dafb 41 $00 $60 $80 $32 $07 sal
ret %10 defb 2T $31 $38

1d a,$67

ret %16

pop bc

&737h

26346 CD 2B 2D call $2dZb
2674Z CD EZ 2D call $2deX 26419 CD A% 2D call $2dal

26422 ED 4% 76 5C 1d ($5c76),hc
26426 75 1d a,c
26427 E6 1F nd $1f
SpEah . i, 22429 Es éz :ub $02
26344 IA 95 SB 1d a, ($5b65) bkt i : o
26349 E6 03T and $63 Soad SOy I [koS
26351 C2 1E 64 ip nz,$b64le
67410
LaF2h 26473 3IC inc a
26354 AF ®or a
26355 IA 05 SB 1d a, ($5b6S)
26358 FE 04 cp $04
26360 20 06 Jr Nz, +$06 6742h))
26362 AF xor a At Gl 2 SR D
26363 32 A9 7E 1d ($7ea9) ,a 2honig oall 7 e Ok
26366 18 19 ir +$19 ZSA0S AR Hon s
6747H
L£700R 26479 FS push af
26368 FE 08 cp %68 o AgIsty ldibia
26376 20 06 Jr Nz, +$06 Z640180R 00 Ldic . t0a
26372 AF et s 26443 CD 38 25 call 2538
26373 32 C2 7E 1d ($7ec2),a EodsoRL DR UgEE Catlssehtl
26376 18 OF Jr +s0f] 26449 1A 1d a, (de)
26450 FS push af
26451 CD BF 16 call $16bf
_ 26454 F1 pop af
©7@ah r) 26455 FE 20 cp %26
e RO cp $ac 26457 28 a% iz, 0T
SERE0 aD N Jjr Nz, +$06 26459 F1 pop af
26382 AF nor a 26466 18 E3 ir -s$ld
26383 32 DS 7E 1d ($7edd),a D667 F1 pop af
26386 18 @5 i +$05
\75Fh
&6714h : inc a

push af

26388 D& 25 sub %25
26390 D2 29 61 ip nc,$6129 26465 47 ld b,a
26466 OE 0A 1d c,$9a
26468 CD 38 25 call &2
26471 CD F1 2R call $2bfl
=5718h 26474 1A 1d a, (de)
26393 ED 4R 76 SC 1d bc, ($5c76) 26475 FS push af
26397 CD 2B 2 call $2d2b 26476 CD BF 16 call $16b+f
264060 EF ret %28 26479 F1 pop af
26486 FE 26 cp %20
26482 28 03 JF oz, +H03
26484 F1 pop af
&6721h 26485 18 CA jr —%36

a1 call s1é661

pop af 7E 1d de,%477e
dec a 26T09 01 a7

82 &7 ld (%6782),a 26512 CD 3C

07 Jr +Ea7

&79ER

246515 CD bA bb6 call sébb6a
&77Eh
defb $11 $04 $14& 02 $19 $9e $9f

&796h
6&785h 26518 CE 29 61 ip $612%9

26501 IE 02 ld a,s62

Program ‘Cross (machine code)’

113

Appendix 1 Replacement ROM routines

The Spectrum ROM routines are written in such a way that any
wrong parameters are spotted and the correct error report given.
For example, if you try to input PRINT AT 24, 33; “Message” then
the PRINT routine will detect that line 24 column 33 is out of
screen.

When writing machine code programs it can be assumed that the
correct parameters will always be used and so the ROM routines can
be rewritten without the error detection etc., which makes them
faster and completely under programmer control.

The following six programs show how CLS., ATTR. SET, PRINT,
PLOT, UNPLOT, SCR$ and POINT can be rewritten. The PRINT
routine handles characters 32 to 127 inclusive (although it could be
adapted to PRINT any character) and actually POKEs the
character on to the screen thus making it unnecessary to OPEN
CHANNEL 2 and allows printing on lines 22 and 23. The unused
variable addresses 23728/9 are used to hold the current PRINT
position.

The SCRS$ routine detects characters 32 to 127 on lines 0 to 21 as
the BASIC version but also allows lines 22 and 23 to be checked. The
PLOT and UNPLOT routines have the same parameters as the
BASIC, with 0, 0 as the bottom left-hand corner of line 21. If you
change the value in address 23774 to 191 then the whole screen can
be PLOTted and 0,0 will be the bottom left-hand corner of line 23.
(Omitting instructions LD A, 175 at address 23774/5 will make 0,0
the top left-hand corner of line 1). The above also applies to the
POINT routine. The address to be modified is 23777. You will see
that the PLOT, UNPLOT and POINT routines use identical FIND
subroutines to find the pixel to be checked; therefore if you were
using all three routines they could share this common subroutine
and save more memory. You could increase speed still more by
adding DI(disable interrupt) at the start of these routines, or indeed
at the beginning of your program, and EI at the end (or when a
KEYSCAN is required). With these programs as a guide you could
write a CIRCLE routine (one that runs faster than the Spectrum’s).

org 23766 2771 EQ ret
CLS (Slow)
21 06 40 1d hl,16384 CLS (Fast)
76T ThH 00 lad (hl) @ PITT7R 21 @0 40 Id hl, 146284
23 inc hl 11 &1 40 1d de, 16385
7C ld a.h ol FF 17 1d bc,b6147
23 FE 38 cE 88 36 60 ld «hl),®
2I74L9 2o F8 Jr n2g.L1 X ED Bo ldir
Program Al.1 » C9 ret

114

Appendix 1—continued

arg 23766
ATTRIBUTE FILL

EXAMFLE
INE 2 FPAFER S
BRIGHT 1 FLASH 1

2+40+64+128=274

Program A1.2

org 23760

FRINT STRING ROUTINE
FOKES CHR. ONTO SCRFEEN
DOES NOT USE RST 1éd

28 HOLDS COLUMN
29 HOLDS LINE

ADDRESS
ADDRESS

ta] 3 l1d de,DATA

ld a,. (de)

bit 7,a

AN (eSS
oD call FRINT

inc de

jr L4

res 7.,&
SD call FRINT
ret

DATA

dets McGRAW-HILL BOOK Co.
defs (UK) Ltd

128+CHR 46="."

defb 174

FRINT ROUTINE

GET LINE/COLUMN IN HL

FRINT
23816 DS

push de

2A RBo SC 1d hl, (23728)
814 ES push hl
23815 F3 push af

CHECE. OUT OF SCREEN

23816 AF xor a

ld a,.h
sub 24
jr o, 0K
rst 8

= EA
(515
@1
FF

11 aa
19
8 7C
Eé& 07

1d a,23
58 1d hl,22528
58 ld de, 2252
@2 l1d bc,767
1d (hl),a
ldir
ret

FOITION

46 1d de, 146384
add hl,de
1d a.h
and 7
rrca
rrca
rroa
or 1
1d 1,a
ld a, 248
and h
1d h,a

FIND START OF CHR.
IN CHR. GENERATOR

2I840 F1
(=15}

[&15]

(51=]

pop af
push hl
3C 1d de, 15366
1d 1,a
ld h,o
add hl,hl
add hl,hl
add hl,hl
add hl,de
pop de

ONTO SCREEN

ld b,8

1d a, (h1)
l1d (de),a

inc hl
inc d
djnz L1

UFDATE SCREEN FOSITION

> Ck &D

28 ol

pop hl
s 1 {2l |
bBit 851
G ez L2

115

Appendix 1—continued
res 5,1

inc h

pop de
ret

Program Al.3

org 23760

FROGRAM TO REFLACE SCREENS$
REQUIRES H=LINE, L=COLUMN
RETURNS WITH A REGISTER
HOLDING CHR CODE

OrR @ IF CHR NOT FOUND

“

23760 26 0A ld h,10
23762 Z2E @7 ld 1,7
23764 CD D8 SC call SCR%
2374647 C°? ret

SCREEN$ ROUTINE
SCR#
FIND SCREEN ADDRESS OF CHR

23768 11 06 40 ld de, 16384

237V RS, add hl,de
23772 7C 1d a,h
23773 E& 07 and 7
23779 OF rerca
23776 OF rrca
23777 OF rrca
23778 BS or 1
23779 6F 1d 1,a
23780 TE F8 1d a,248
23782 A4 and h
23783 &7 1d h,a

CHECK. CHR WITH CHR GEN.

27784 11 o6 ID
L
2E787 06 a8
23789 OE 00

Program Al.4

1d de, 15616

1d b,3
1d c,o

org 2I760
FROGRAM TO REFLACE ROM FLOT
REQUIRES H=y, L=u

(515} 1d h,@
=] 1t B L
D8 SC call FLOT
ret

1d (23728),h1

CHECE FOR DE=16784

CR 72 bit 6,d
20 11 jr nz . NFOUND
ES push hl
1A 1d a, (de)
BE cp (hl)
26 o1 jr nz,L1
aC 1NE §¢
13 inc de
24 inc h
1@ F7Z gijnz L2
S El pop hl
CB ‘59 bit J.c
1808 20 04 jr nz ,FOUND
23816 18 E7 GRS
NFOUND
23812 AF xor a
23813 . E9 ret

CONVERT TO CHR CODE

FOUND

27814 R7 ar a

2I815 21 06 EC 1d hl, 15360
27818 ER ex de,hl
23819 ED 52 sbc hl,de
23821 06 oI 1d b, =

rr h

FErde]
djnz L4
1d a,l
dec a
ret

DE SC call FIND
or (hl)
1d (hl),a
ret

FIND SCREEN BIT
RET WITH HL=RYTE, A=RIT

FIND

Appendix 1—continued

IE AF
94

&7

i1 oo 40
7D

2 E& 07

7D

E4 FB

1E

1F

iF

ProEgram Al5
23766

ROM FLOT OVER 1

REQUIRES H=y, L=x

26 90
2E S5F
D8 =C

DE 5C

FIND SCREEN EIT

RE™ WITH HL=RYTE,

ﬁProéranx!\lG

“ROGRAM TO REFLACE

ld a,175
sub h

ld h,a
l1d de, 16384
ld a,l1
and 7
push af
ld a,l
and 248
rira

A

rFra

ld e,a
1d a,h
and 96
rla

rla

or e

l1d e.a
1d a.h
and 7
or d

1d h,®
ld 1,95

call FLOTOVER

ret

call FIND
war (hl)
1d (hl),a
ret

A=RIT

1d a,175

sub h
ld h,a
l1d de, 16384
ld a,l
and 7
push af
ld a,l
and 248
rra
rra

rra

25803

1d d.a

ld a.h
and 192
rra

rira

rra

or d

1d d,a
pop af
Id 14,126

and a
cp @

ir .2
re 1
dec a
1L % |

1d a,l
ex de,hl
ret

lad e,a
ld a,h
and Sé6
rla
rla
or e
ld e,a
1d a.h
and 7
or d

ld d,a
ld a,h
and 192
rra

rra

rra

or d

ld d,a
pop af
1d 1,128

and a
cp @

g 2
rr 1
dec a
jr L1

ld a,l

ex de,hl
ret

117

Appendix 1—continued

1d a,h
FROGRAM TO REFLACE 38 and 56
ROM FOINT rla
“QUIRES H=y, L= rla
or e
26 9o 1d h,a 1d e,a
2E SF 1'dW1 95 ld a,h
CD D8 S call FOINT “»7 and 7
Y ret
CD Eo SC call FIND oar d
Ab and (hl) ld d,a
Cc8 ret =z 1d a,h
2 3IE o1 1d a,1 (of5] and 192
ce ret rea
rra
FIND-SCREEN BIT rra
RET WITH HL=RYTE, A=RIT or d
ld d,a
FIND pop af
8¢ 1d 1,128
= AF ld a,175 and a
sub h (a15) cp ©
1d h,a a5 iy 2
Qo 40 ld de, 16384 1D (R
1d a,1 dec a
o7 and 7 Fb e L1
push af
l1d a,l 1d a,l
F8 and 248 ex de,hl
rra
rra
rra ret
ld e,a

Program Al.7

118

Appendix 2

Spectrum (Z80) machine code listings

NOTES: (HL)—the number held in the address to which register pair HL points
NN is entered as second number first, for example, 4000 is entered as 00 40 (in hex.)
Register A—the general-purpose accumulator

Decimal Bytes Hex Mnemonic Description
0 1 00 nop No operation
1 3 01 ldbe,NN Load BC with NN
2 1 02 ld(bc),a Store A to (BC)
3 1 03 inchc Increment BC by 1
4 1 04 incb Increment Bby 1
5 1 05 decb Decrement B by 1
6 2 06 1db,N Load Bwith N
7 1 07 rlca Rotate left circular A
8 1 08 exaf,af Set prime AF active
9 1 09 addhl,be BC+HL—HL
10 3 0A lda,(bc) Load A with number in location (BC)
11 1 0B decbc Decrement BC by 1
12 1 0C incc Increment Cby 1
13 1 0D decc Decrement C by 1
14 2 QE ldc¢, N Load C with N
15 1 OF rrca Rotate A right circular
16 2 10 djnzx Decrement B and JRif B #0, + or< x
17 3 11 ldde,NN Load DE with NN
18 1 12 ld(de),a Store A to (DE)
19 1 13 incde Increment DE by 1
20 1 14 incd Increment D by 1
21 1 15 decd Decrement Dby 1
22 2 16 1dd,N Load DwithN
23 1 17 rla Rotate A left thru carry
24 2 18 jrx Unconditional jump relative, + or —x
25 1 19 addhl,de DE+HL—HL
26 3 1A lda,(de) Load A with location (DE)
27 1 1B decde Decrement DE by 1
28 1 1C ince Increment E by 1
29 1 1D dece Decrement E by 1
30 2 1E 1de,N Load E with N
31 1 1F rra Rotate A right thru carry
32 2 20 jrnz,x Jump relative if non-zero, + or —x
33 3 21 1dhL,LNN Load HL with NN
34 3 22 1d (NN),hl Store HL to location NN
35 1 23 inchl Increment HL by 1
36 1 24 inch Increment Hby 1
37 1 25 dech Decrement Hby 1
38 2 26 1dhN Load Hwith N
39 1 27 daa Decimal adjust A
40 2 28 jrz,x Jump relative if zero, + or —x
41 1 29 addhlhl HL+HL—HL
42 3 2A 1dhl(NN) Load HL with location (NN)
43 1 2B dechl Decrement HL by 1
44 1 2C incl Increment Lby 1
45 1 2D decl Decrement L by 1
46 2 2E 1dIN Load Lwith N
47 1 2F cpl Complement A (1’s comp.)
48 2 30 jrnc,x Jumprelative if no carry, + or —x
49 3 31 ldsp,NN Load stack pointer with NN
50 3 32 1d(NN),a Store A to location NN
51 1 33 incsp Increment SPby 1
52 1 34 inc(hl) Increment (HL) by 1
53 1 35 dec(hl) Decrement (HL) by 1
54 2 36 1d(hD),N Store N to (HL)
55 1 37 scf Set carry flag
56 2 38 jre,x Jump relative if carry, + or —x
57 1 39 addhl,sp SP+HL—-HL
58 3 3A 1da,(NN) Load A with location (NN)
59 1 3B decsp Decrement SPby 1
60 1 3C inca Increment A by 1
61 1 3D deca Decrement A by 1

119

Appendix 2—continued

Decimal Bytes Hex Mnemonic Description
62 2 3E lda,N Load AwithN
63 1 3F ccf Complement carry flag
64 1 40 1ldb,b MoveBtoB
65) 41 ldb,c MoveCtoB
66 1 42 ldbd MoveDtoB
67 1 43 Idb,e MoveE toB
68 i 44 ldbh MoveHtoB
69 1 45 1db,l MoveLtoB
70 1 46 1db,(hl) Move (HL) to B
71 1 47 ldb,a MoveAtoB
72 1 48 ldc,b MoveBtoC
73 1 49 ldc,c MoveCtoC
74 1 4A ldcd MoveDtoC
75 1 4B ldc,e MoveEtoC
76 1 4C ldc,h MoveHtoC
i 1 4D ldel MoveLtoC
78 1 4E ldc,(hDh Move (HL) toC
79 1 4F ldc,a MoveAtoC
80 1 50 ldd,b MoveBtoD
81 1 51 ldd,c MoveCtoD
82 1 52 1dd,d MoveDtoD
83 1 53 ldd,e MoveEtoD
84 1 54 1dd,h MoveHtoD
85 1 55 1dd,l MoveLtoD
86 1 56 ldd,(hl) Move (HL) toD
87 1 57 ldd,a Move AtoD
88 1 58 lde,b MoveBtoE
89 1 59 lde,c MoveCtoE
90 1 5A lded MoveDtoE
91 1 5B lde,e MoveEtoE
92 1 5C ldeh MoveHtoE
93 1 5D lde,l MoveLtoE
94 1 5E lde,(hl) Move (HL) to E
95 1 5F lde,a MoveAtoE
96 i} 60 ldhb MoveBtoH
97 1 61 ldh,c MoveCtoH
98 1 62 ldh,d Move Dto H
99 1 63 ldh,e Move EtoH

100 1 64 1dhh Move Hto H
101 1 65 1dh,l MoveLtoH
102 1 66 1dh,(hl) Move (HL) to H
103 1 67 ldh,a MoveAtoH
104 1 68 1dl,b MoveBtoL
105 1 69 ldlc MoveCtoL
106 1 6A 1dld MoveDtoL
107 1 6B ldle MoveEtoL
108 1 6C 1dLh MoveHtoL
109 1 6D 1d11 MoveLtoL
110 1 6E 1d1,(hl) Move (HL)to L
111 1 6F 1dl,a MoveAtoL
112 1 70 1ld(hl),b Move B to (HL)
113 1 71 1d(hl),c Move C to (HL)
114 1 72 1d (hl),d Move D to (HL)
115 1 73 1d(hl),e Move E to (HL)
116 1 74 1d (hl),h Move H to (HL)
117 1 75 ld(hD),1 Move L to (HL)
118 1 76 halt HALT

119 1 77 1d(hl),a Move A to (HL)
120 1 78 ldab MoveBto A
121 1 79 lda,c MoveCto A
122 1 7A ldad MoveDto A
123 1 7B lda,e MoveEto A
124 1 7C lda,h MoveHto A
125 1 7D lda,l Move Lto A
126 1 7E lda,(hl) Move (HL) to A
127 1 7F lda,a Move Ato A
128 1 80 adda,b B+A—A

129 1 81 adda,c C+A—A

130 1 82 adda,d D+A—A

131 1 83 adda,e E+A-A

120

Appendix 2—continued

Decimal Bytes Hex Mnemonic Description
132 1 84 addah H+A-A
133 1 85 adda,l L+A—A
134] 86 adda,(hl) (HL)+A—A
135 1h 87 adda,a A+A—-A
136 1 88 adca,b B+A+carry—A
137 1 89 adca,c C+A+carry—A
138 1 8A adca,d D+A+carry—A
139 | 8B adc,a,e E+A+carry—A
140 1 8C adc,ah H+A+carry—A
141 1 8D adc,a,l L+A+carry—A
142 1 8E adca,(hl) (HL)+A+carry—A
143 11 8F adca,a A+A+carry—A
144 1 90 subb A-B-A
145 1 91 subc A-C—A
146 1 92 subd A-D-A
147 1 93 sube A-E-A
148 1 94 subh A-H-A
149 1L 95 subl A-L-A
150 1 96 sub(hl) A—-(HL)->A
151 1 97 suba A-A-A
152 1 98 sbca,b A-B-carry—A
153 1 99 sbca,c A-C—carry—A
154 I 9A sbca,d A—-D-carry—A
155 1 9B sbca,e A—E-—carry—A
156 1 9C sbcah A-H-carry—A
157 1 9D sbca,l A—L-carry—A
158 1 9E sbca,(hl) A—(HL)-carry—A
159 1 9F sbca,a A—-A-carry—A
160 1 A0 andb Aand B—»A
161 1 Al andc Aand C—»A
162 1 A2 andd Aand DA
163 1 A3 ande AandE-A
164 1 A4 andh Aand H-A
165 1 A5 andl Aand L—-A
166 1 A6 and (hl) Aand (HL)->A
167 1 A7 anda Aand A-A
168 1 A8 xorb A exclusive or B5>A
169 1 A9 xorc A exclusive or C—A
170 1 AA xord A exclusiveor DA
171 1 AB xore A exclusiveor ESA
172 1 AC xorh A exclusive or H—>A
173 1 AD xorl A exclusive or L-A
174 1 AE xor (hl) A exclusive or (HL)—»A
175 1 AF xora A exclusiveor A>A
176 1 B0 orb AorB—A
177 1 Bl orc AorC—HA
178 1 B2 ord AorD-A
179 1 B3 ore AorE—A
180 1 B4 orh AorH-A
181 1 B5 orl AorL—A
182 1 B6 or(hl) Aor (HL)»A
183 1 B7 ora Aor A—A
184 1 B8 cpb Compare A:B
185 1 B9 cpc Compare A:C
186 1 BA cpd Compare A:D
187 1 BB cpe Compare A:E
188 1 BC cph Compare A:H
189 1 BD cpl Compare A:L
190 1 BE cp(hl) Compare A:(HL)
191 1 BF cpa Compare A:A
192 1 CO retnz Return if non-zero
193 1 C1 popbc Pop BC from stack
194 3 C2 jpnz,NN Jump to NN if non zero
195 3 C3 jpNN Unconditional jump to NN
196 3 C4 callnz, NN Call NN ifnon-zero
197 1 C5 pushbc Push BC onto stack
198 2 C6 adda,N A+N—-A
199 1 C7 rst0 Call 0000 start routine
200 1 C8 retz Return if zero
201 1 C9 ret Return

121

Appendix 2—continued

Decimal Bytes Hex Mnemonic Description
202 3 CA jpz,NN Jump to NN if zero
203 CB See special set of CB routines
204 3 CC callz NN Call NN if zero
205 3 CD callNN CallNN
206 2 CE adca,N A+N-+carry—>A
207 1 CF rst8 Call 0008 error routine
208 1 DO retnc Returnifcarry =0
209 1 D1 popde Pop DE from stack
210 3 D2 jpnc,NN Jumpto NN ifcarry =0
211 2 D3 out(N),a Output A toport N
212 3 D4 callnc,NN CallNN ifcarry =0
213 1 D5 pushde Push DE onto stack
214 2 D6 subN A-N-A
215 E D7 rst16 Call 0010 print routine
216 X D8 retc Returnifcarry=1
v 217 1 D9 exx Set prime B-L active (exchange registers)
218 3 DA jpc,NN Jumpto NN ifcarry=1
219 2 DB ina,(N) Input to A from port N
220 3 DC calle,NN CallNN ifcarry =1
221 DD prefixes instructions
using ix See special set of DD routines
222 2 DE sbca,N A- prcarry—>A
223 1 DF rst24 Call 0018 character routine (1)
224 1 E0 retpo Return if overflow/parity flag = 0
225 1 E1 pophl Pop HL from stack
226 3 E2 jppo,NN Jump to NN if overflow/parity flag = 0
227 1 E3 ex(sp),hl Exchange (SP) and HL
228 3 E4 callpo,NN Call NN ifoverflow/parity flag = 0
229 1 E5 pushhl Push HL onto stack
230 2 E6 andN Aand N-A
231 1 E7 rst32 Call 0020 character routine (2)
232 1 E8 retpe Return ifoverflow/parity flag =1
233 1 E9 jp(hl) Jump to location (HL)
234 3 EA jppe,NN Jump to NN if overflow/parity flag = 1
235 1 EB exde,hl Exchange DE and HL
236 3 EC call pe, NN Call NN ifoverflow/parity flag = 1
237 ED See special set of ED routines
238 2 EE xorN Aexclusiveor N>A
239 1 EF rst40 Call 0028 calculator routine
240 1 FO retp Returnifsign flag =0
241 1 F1 popaf Pop AF from stac
242 3 F2 jpp,NN Jump to NN if sign flag=0
243 1 F3 cﬁ Disagle interrupts
244 3 F4 callp,NN CallNN ifsign flag =0
245 1 F5 pushaf Push AF onto stack
246 2 F6 orN AorN-A
247 1 F7 rst48 Call 0030 work space routine
248 1 F8 retm Returnifsignflag=1
249 1 F9 1dsp,hl Move HL to SP
250 3 FA jpm NN Jump to NN if signflag =1
251 1 FB ei Enable interrupts
252 3 FC callm,NN Call NN ifsign flag=1
253 FD prefixesinstructions
using iy See special set of FD routines
254 2 FE cpN Compare A:N
255 1 FF rst56 Call 0038

122

Appendix 2—continued

DD 09

DD 19

DD 21 +dddd
DD 22 addr
DD 23

DD 29

DD 2A addr
DD 2B

DD 34d

DD 35d

DD 36d +dd
DD 39
DD46d
DD4Ed
DD56d

DD 5Ed
DD 66 d
DD6Ed
DD70d
DD71d
DD 72d

DD 73d

DD 74d
DD75d

DD 77d
DD7Ed

DD 8Ed
DD96d
DDY9Ed
DD A6d
DD AEd
DD B6d
DDBEd

ADD
ADD
LD
LD
INC
ADD
LD
DEC
INC
DEC
LD
ADD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
ADD
ADC
SUB
SBC
AND
XOR
OR
CP

IX,BC
IX,DE
IX,+dddd
(addr),IX
IX

IX,IX
IX,(addr)
IX
(IX+d)
(IX+d)
(IX+d),+dd
IX,SP
B,(IX+d)
C,IX+d)
D,IX+d)
E,IX+d)
H,IX+d)
L,(IX+d)
(IX+d),B
(IX+d),C
(IX+d),D
(IX+d),E
(IX+d),H
(IX+d),L
(IX+d),A
A (IX+d)
A, (IX+d)
A,(IX+d)
(IX+d)
A,(IX+d)
(IX+d)
(IX+d)
(IX+d)
(IX+d)

DD CB d 06
DD CB d OE
DDCBd 16
DD CBd 1E
DD CBd 26
DD CB d 2E
DD CBd 3E
DD CB d 46
DD CB d4E
DD CB d 56
DD CBd 5E
DD CB d 66
DD CB d 6E
DDCBd 76
DDCBAd7E
DD CB d 86
DD CB d 8E
DD CB d 96
DD CB d 9E
DD CBd A6
DD CBd AE
DD CB d B6
DD CB d BE
DD CBdCé
DD CBdCE
DD CB d Dé6
DD CB d DE
DD CBdE6
DD CBd EE
DD CBdF6
DD CBd FE
DD E1

DD E3

DD E5

DD E9

DD F9

RLC
RRC
RL
RR
SLA
SRA
SRL
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
RES
RES
RES
RS
RES
RES
RES
RES
SET
SET
SET
SET
SET
SET
SET
SET
POP
EX
PUSH
JP
LD

(IX+d)
(IX+d)
(IX+d)
(IX+d)
(IX+d)
(IX+d)
(IX+d)
0,IX+d)
1,IX+d)
2,(IX+d)
3,IX+d)
4,(IX+d)
5,(0X+d)
6,(IX+d)
7,(IX+d)
0,(IX+d)
1,(IX+d)
2,IX+d)
3,(IX+d)
4,(IX+d)
5,(IX+d)
6,(IX+d)
7,dX+d)
0,(IX+d)
1,IX+d)
2,(IX+d)
3,IX+d)
4,(IX+d)
5,(IX+d)
6,(IX+d)
7,IX+d)
IX
(SP),IX
IX

(IX)
SP,IX

123

Appendix 2—continued

ED Instructions

124

ED 40 ED50 ED 60 ED A0 EDBO
IN IN IN LDI LDIR
B,(C) D,(C) H,(C)

ED41 EDS51 ED61 EDA1 EDB1
ouT ouT ouT CPI CPIR
©),B (),D (C),H

ED42 ED52 ED 62 ED72 ED A2 ED B2
SBC SBC SBC SBC INI INIR
HL,BC HL,DE HL,HL HL,SP

ED43 ED53 ED63 ED73 ED A3 EDB3
(addr),BC | (addr),DE | (addr),HL | (addr),SP OUTI OTIR
ED44

NEG

ED45

RETN

ED 46 ED 56 ED 66

IMO IM1 IM2

ED 47 ED 57 ED67

LD LD RRD

LA Al

ED48 ED58 ED 68 ED78 ED A8 EDBS8
IN IN IN IN LDD LDDR
C,(©) E,(C) L,C) A C)

ED49 ED59 ED69 ED79 EDA9 EDB9
ouT ouT ouT ouT CPD CPDR
©),C (C),E (C),L ©),A

ED4A ED5A ED6A ED7A ED AA EDBA
ADC ADC ADC ADC IND INDR
HL,BC HL,DE HL,HL HL,SP

ED4B ED5B ED6B ED7B EDAB EDBB
LD LD LD LD OouTD OTRD
BC,(addr) | DE,(addr) | HL,(addr) | SP,(addr)

ED4D

RETI

ED4F EDS5F ED6F

LD LD RLD

R,A AR

Appendix 3

Decimal-hexadecimal conversion table

Decimal 0-255 Hexadecimal 00—FF, Low byte

Dec Hex Dec Hex Dec. Hex. 2’sC. Dec. Hex. 2’sC.
0 00 64 40 128 80 -128 192 Co —64
1 01 65 41 129 81 -127 193 C1 —63
2 02 66 42 130 82 -126 194 C2 —62
3 03 67 43 131 83 -125 195 C3 —61
4 04 68 44 132 84 —-124 196 C4 —60
5 05 69 45 133 85 -123 197 C5 -59
6 06 70 46 134 86 —1922 198 Cé —-58
7 07 71 47 135 87 =121 199 C7 -57
8 08 72 48 136 88 -120 200 C8 —56
9 09 73 49 137 89 -119 201 C9 —55

10 0A 74 4A 138 8A —-118 202 CA -54
11 0B 75 4B 139 8B -117 203 CB —-53
12 0C 76 4C 140 8C —-116 204 CcC —-52
13 0D 77 4D 141 8D —-115 205 CD -51
14 O0E 78 4E 142 8E —-114 206 CE -50
15 OF 79 4F 143 8F —-113 207 CF —49
16 10 80 50 144 90 —-112 208 DO —48
17 11 81 51 145 91 —111 209 D1 —47
18 12 82 52 146 92 -110 210 D2 —46
19 13 83 53 147 93 -109 211 D3 —45

20 14 84 54 148 94 —-108 212 D4 —44

21 15 85 55 149 95 -107 213 D5 —43

22 16 86 56 150 96 -106 214 D6 —42

23 17 87 57 151 97 -105 215 D7 —41

24 18 88 58 152 98 -104 216 D8 —40

25 19 89 59 153 99 —-103 217 D9 -39

26 1A 90 5A 154 9A -102 218 DA —-38

27 1B 91 5B 155 9B -101 219 DB -37

28 1C 92 5C 156 9C —-100 220 DC -36

29 1D 93 5D 157 9D -99 221 DD -35

30 1E 94 5E 158 9E -98 222 DE -34

31 1F 95 5F 159 9F -97 223 DF -33

32 20 96 60 160 A0 -96 224 E0 -32

33 21 97 61 161 Al -95 225 El =31

34 22 98 62 162 A2 —94 226 E2 -30

35 23 99 63 163 A3 -93 227 E3 -29

36 24 100 64 164 Ad -92 228 E4 —28

37 25 101 65 165 A5 -91 229 E5 =27

38 26 102 66 166 A6 -90 230 E6 —26

39 27 103 67 167 A7 -89 231 E7 —25

40 28 104 68 168 A8 —88 232 E8 —24

41 29 105 69 169 A9 —87 233 E9 -23

42 2A 106 6A 170 AA —86 234 EA -22

43 2B 107 6B 171 AB -85 235 EB -21

44 2C 108 6C 172 AC —84 236 EC -20

45 2D 109 6D 173 AD —83 237 ED -19

46 2E 110 6E 174 AE —82 238 EE -18

47 2F iii 6F 175 AF —81 239 EF -17

48 30 112 70 176 BO —-80 240 FoO —-16

49 31 113 71 177 B1 -79 241 F1 =15

50 32 114 72 178 B2 -78 242 F2 -14

51 33 115 73 179 B3 =i frf 243 F3 -13

52 34 116 74 180 B4 -76 244 F4 =12

53 35 117 75 181 B5 -75 245 F5 -11

54 36 118 76 182 B6 -74 246 F6 -10

55 37 119 77 183 B7 -73 247 F7 -9

56 38 120 78 184 B8 -72 248 F8 -8

57 39 121 79 185 B9 —71 249 F9 -7

58 3A 122 7A 186 BA -70 250 FA —6

59 3B 123 7B 187 BB -69 251 FB -5

60 3C 124 7C 188 BC —68 252 FC —4

61 3D 125 7D 189 BD -67 253 FD -3

62 3E 126 7E 190 BE —66 254 FE -2

63 3F 127 7F 191 BF —65 255 FF -1

125

Appendix 3—continued

Decimal 0-65 280 Hexadecimal 00-FF, high byte

Decimal Hex Decimal Hex Decimal Hex. Decimal Hex
0 00 16 384 40 32 768 80 49 152 Co
256 01 16 640 41 33 024 81 49 408 C1
512 02 16 896 42 33 280 82 49 664 C2
768 03 17 152 43 33 536 83 49 920 C3
1024 04 17 408 44 33 792 84 50 176 C4
1280 05 17 664 45 34 048 85 50 432 C5
1536 06 17 920 46 34 304 86 50 688 C6
1792 07 18176 47 34 560 87 50 944 C7
2048 08 18 432 48 34 816 88 51 200 C8
2 304 09 18 688 49 35072 89 51 456 C9
2 560 0A 18 944 4A 35 328 8A 51 712 CA
2816 0B 19 200 4B 35 584 8B 51 968 CB
3072 0C 19 456 4C 35 840 8C 52 224 CC
3328 0D 19712 4D 36 096 8D 52 480 CD
3 584 OE 19 968 4E 36 352 8E 52 736 CE
3 840 OF 20 224 4F 36 608 8F 52 992 CF
4 096 10 20 480 50 36 864 90 53 248 DO
4352 11 20 736 51 37120 91 53 504 D1
4 608 12 20992 52 37 376 92 53 760 D2
4 864 13 21 248 53 37 632 93 54 016 D3
5120 14 21 504 54 37 888 94 54 272 D4
5376 15 21 760 55 38 144 95 54 528 D5
5632 16 22016 56 38 400 96 54 784 D6
5 888 17 22 272 57 38 656 97 55 040 D7
6144 18 22 528 58 38 912 98 55 296 D8
6 400 19 22 784 59 39 168 99 55 552 D9
6 656 1A 23 040 5A 39 424 9A 55 808 DA
6912 1B 23 296 5B 39 680 9B 56 064 DB
7168 1C 23 552 5C 39 936 9C 56 320 DC
7424 1D 23 808 5D 40 192 9D 56 576 DD
7 680 1E 24 064 5E 40 448 9E 56 832 DE
7936 1F 24 320 5F 40 704 9F 57 088 DF
8192 20 24 576 60 40 960 A0 57 344 EO
8 448 21 24 832 61 41 216 Al 57 600 E1l
8 704 22 25 088 62 41 472 A2 57 856 E2
8 960 23 25 344 63 41728 A3 58 112 E3
9216 24 25 600 64 41 984 A4 58 368 E4
9472 25 25 856 65 42 240 A5 58 624 E5
9728 26 26 112 66 42 496 A6 58 880 E6
9984 27 26 368 67 42 752 A7 59 136 E7
10 240 28 26 624 68 43 008 A8 59 392 E8
10 496 29 26 880 69 43 264 A9 59 648 E9
10 752 2A 27 136 6A 43 520 AA 59 904 EA
11 008 2B 27 392 6B 43 776 AB 60 160 EB
11 264 2C 27 648 6C 44 032 AC 60 416 EC
11 520 2D 27 904 6D 44 288 AD 60 672 ED
11 776 2E 28 160 6E 44 544 AE 60 928 EE
12 032 2F 28 416 6F 44 800 AF 61 184 EF
12 288 30 28 672 70 45 056 B0 61 440 FO
12 544 31 28 928 71 45 312 B1 61 696 F1
12 800 32 29 184 72 45 568 B2 61 952 F2
13 056 33 29 440 73 45 824 B3 62 208 F3
13 312 34 29 696 74 46 080 B4 62 464 F4
13 568 35 29 952 75 46 336 B5 62 720 F5
13 824 36 30 208 76 46 592 B6 62 976 Fé
14 080 37 30 464 77 46 848 B7 63 232 F17
14 336 38 30 720 78 47 104 B8 63 488 F8
14 592 39 30976 79 47 360 B9 63 744 F9
14 848 3A 31 232 TA 47 616 BA 64 000 FA
15 104 3B 31488 7B 47 872 BB 64 256 FB
15 360 3C 31744 7C 48 128 BC 64 512 FC
15616 3D 32 000 7D 48 384 BD 64 768 FD
15 872 3E 32 256 7E 48 640 BE 65 024 FE
16 128 3F 32512 7F 48 896 BF 65 280 FF

126

Appendix 4

Useful calculator literals

Literal d Function Action
1 EXCHANGE Top two values swapped
3 SUBTRACT Top value subtracted
from the one underneath
4 MULTIPLY Multiply top two values
5 DIVIDE Top value divided into
the one underneath

15 ADD Add top two values

31 SIN Sine of top value

32 COS Cosine of top value

33 TAN Tangent of top value

39 INT Integer of top value

40 SQR Square root of top value

49 DUPLICATE Duplicate top value and
place on top of stack

52 STK Stack data held in
compressed form
(see Chapter 7)

56 END Finish calculator
routine and return to
machine code program

61 RESTACK Replace top value with its
floating point form

160 0 Stack 0

161 1 Stack 1

162 3 Stack %

163 m/2 Stack 7/2

164 10 Stack 10

127

ydd g¥ = 41 + OVEp = Lg UWN[0d ‘g] auI[ut 1990BIY0 Jo 334q yy14 : Sjdwrexy

Oaay 0aLy
oaar T
Oads oan
€¢ oavy | GT odsy L
oder oazy
odsy oary
oaLy odob
00ar 00L%
odar 009%
i &
5 0
r44 owr | ¥I 0oy 9
006% 002y
008y 001
0oL Go0¥
ovar 570
ovay Ovoy
ovils ovir
12 ovwy | €T ovel]
oVeY ovey
ovss oviy
OvLY ovoy
oRav ALY
0say 089%
oady e
02 wve | GI o8EY 14
086% 08zZ¥y
088y 081y
08LY 080%
093V 0917
09d% 099b
= &
61 oove | TT 09e¥ g
096% 092%
0985 091%
724 090
ED [
orar ovor
= i
O
18 opVY 1] ¢ ovEr (4
or6d 0¥y
orsy orly
orLy 0¥0¥
| one
[acid 0Ly
ozar 0o
deay i
LI 0TV 6 0zeY T
0zey 02z
0Z8y 0z1y
| oa 0z0v
00ab 00LY
o0ay 009%
ooy o0%
91 00v¥ 8 00g% 0
0067 002¥
008% 001V
Vi 61 81 Ll 91 g1 ¥l £1 z1 11 01 40 d0] ao] oo) €0 | voi 60 80] L0 90 S0 ¥ £0 20 10 | 00 00LY 000¥%
92 (92| ¥3| €2 32 |14)03 | 61[8T| LT[OT|ST| PI|ET|{2L|IT|OT) 6 | 8| L[9[S|¥[e]|2]|T]O aury aurg aury
uumjo))

Q0
oy Aepdsip jo dewr Arowapy c Nmmuﬂ@@&(« m

Appendix 6

Farewell program

For those of you who like taking programs apart to see how they
work, the tape contains a machine code program called PROBLEM.
The object of the program is to demonstrate the fact that the
Spectrum can run a machine code routine while giving full BASIC
control to the programmer.

When loaded, the computer will display a copyright message in
the top right-hand corner of the screen. This copyright message will
remain on the screen at all times. Your problem is to find out how it
isachieved and to remove the message without crashing or NEWing
the Spectrum.

The program is such that it would be impossible to produce a
useful listing and it has several features that make it difficult to
trace the machine code. To remove the message you will need a
suitable machine code routine.

If you successfully remove the message and disassemble the
routine you will see that it opens up a whole new area of
programming possibilities. Good luck.

() 1981 71 Oron WY,

, program demonstrates that
SPECTRUM 15 able to do two
1gs at the same time.)
copyright message i1is “fixed"-

FROELE M Remove the message.
Do SO0 without crashing or HNEWiIing
the computer.

/sou have full BRASIC con
bout SK RAM. You mnay a
Listing, LORD,

delete the e-

r Aand 1nsert Your

tiormal 3L ot

129

Appendix 6—continued

1¢ RANDOMIZE USR (FEEK (FEEE 23
H27+256*FEEE. 23628+1) + (256#% (FEEK
(FEEE. 23627+2G6*FEEK. 23628+2))))
CLEAR 27100
IO PRINT AT 2,031"This program d
aenonstrates that the SFECTRUM is

able to do two things at the sa
me time."""The copyright message
is "fixed™"™

35 FRINT

46 FRINT "FROELEM : Remove the
message. "’ "Do so without crashing

Program ‘Problem’

130

Qr

NEWingthe computer.”

56 FRINT

66 FRINT "You have full BASIC c
ontrol and about S RAM. You may
anal yse the listing, LOAD, SAVE

.MERGE or even delete the exist

ing
Wi .
76
of I
8¢
6

program and insert your o

FRINT *"CLUE : Normal value
= &2d"

STOF

L.OAD ""CODE : GO TO 1@

Software to
accompany

this book. . .

A cassette tape, for 16K and 48K Spectrums, is available to go with this
book. It includes many useful programs, as well as demonstrations of the
techniques described in the book. And there is a full machine-code
version of CROSS, an arcade game of professional quality!

Contents of the cassette tape are:—

PLOTDEMO — plots messages anywhere on the screen, using BASIC
to set height and width.

REACTION — a reaction timer to demonstrate fast machine-code
counting.

RNDEMO — produces random height ‘skyscrapers’ using
machine-code.

KEYDEMO — machine-code fast keyscan.

MOVEDEMO — demonstrates independent high-resolution
foreground and background movement.

PIXELDEMO — demonstrates movement at pixel level.

NUMBERS — utility to print Sinclair floating-point form of any
number.

SOUND — five different machine-code sounds, including white
noise.

CROSS-BASIC — ‘Cross’ game in BASIC and machine-code.

CROSS-M/C — Full machine-code version of ‘Cross'.

PROBLEM — If you've understood the book you should be able to

erase the rather persistent McGraw-Hill logo that is
always on the screen!

The tape is distinctively packed to match this book, and comes complete
with a card enabling you to use the free McGraw-Hill
software support service.

ARCADE PROGRAMMING
Just £6.95 inc. V.A.T.
(07 084730 4)

McGraw-Hill books and software should be available where you bought this book, but in
case of difficulty send direct to:

McGraw-Hill Book Company (UK) Limited,

Shoppenhangers Road, Maidenhead, Berkshire.

